refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 777 results
Sort by

Filters

Technology

Platform

accession-icon SRP126311
Single cell RNA sequencing of kidney tubuloids and the tissue that the tubuloids were derived from
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Adult Stem Cell (ASC )-derived organoids are 3D epithelial structures that recapitulate essential aspects of their organ of origin. We have developed conditions for the long-term growth of primary kidney tubular epithelial organoids ('tubuloids'). Cultures can be established from mouse and human kidney tissue, as well as from urine and can be expanded for at least 20 passages (> 6 months). The structures retain a normal number of chromosomes. Human tubuloids represent proximal as well as distal nephron segments, as evidenced by gene expression, immunofluorescence and tubular functional analyses. BK virus infection of tubuloids recapitulates in vivo phenomena. "Tumoroids" can be established from Wilms nephroblastoma. Kidney tubuloids from urine from a subject with Cystic Fibrosis (CF) allows ex vivo assessment of treatment efficacy. Finally, tubuloids cultured on microfluidic organ-on-a-chip plates adopt a tubular conformation and display active (trans-)epithelial transport function. Adult kidney-derived epithelial tubuloids allow studies of hereditary, infectious and malignant kidney disease in a personalized fashion. Overall design: We generated single cell transcriptome data of kidney tubuloids and the tissue that the tubuloids were derived from

Publication Title

Tubuloids derived from human adult kidney and urine for personalized disease modeling.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP126310
Bulk RNA sequencing of kidney tubuloids and the tissue that the tubuloids were derived from
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Adult Stem Cell (ASC )-derived organoids are 3D epithelial structures that recapitulate essential aspects of their organ of origin. We have developed conditions for the long-term growth of primary kidney tubular epithelial organoids ('tubuloids'). Cultures can be established from mouse and human kidney tissue, as well as from urine and can be expanded for at least 20 passages (> 6 months). The structures retain a normal number of chromosomes. Human tubuloids represent proximal as well as distal nephron segments, as evidenced by gene expression, immunofluorescence and tubular functional analyses. BK virus infection of tubuloids recapitulates in vivo phenomena. "Tumoroids" can be established from Wilms nephroblastoma. Kidney tubuloids from urine from a subject with Cystic Fibrosis (CF) allows ex vivo assessment of treatment efficacy. Finally, tubuloids cultured on microfluidic organ-on-a-chip plates adopt a tubular conformation and display active (trans-)epithelial transport function. Adult kidney-derived epithelial tubuloids allow studies of hereditary, infectious and malignant kidney disease in a personalized fashion. Overall design: We generated transcriptome data of kidney tubuloids and the tissue that the tubuloids were derived from

Publication Title

Tubuloids derived from human adult kidney and urine for personalized disease modeling.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE14618
Microarray analyses of induction failure in T-ALL
  • organism-icon Homo sapiens
  • sample-icon 77 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2), Affymetrix Human Genome U133A Array (hgu133a)

Description

The clinical and cytogenetic features associated with T-cell acute lymphoblastic leukemia (T-ALL) are not predictive of early treatment failure. Based on the hypothesis that microarrays might identify patients who fail therapy, we used the Affymetrix U133 Plus 2.0 chip and prediction analysis of microarrays (PAM) to profile 50 newly diagnosed patients who were treated in the Children's Oncology Group (COG) T-ALL Study 9404. We identified a 116-member genomic classifier that could accurately distinguish all 6 induction failure (IF) cases from 44 patients who achieved remission; network analyses suggest a prominent role for genes mediating cellular quiescence. Seven genes were similarly upregulated in both the genomic classifier for IF patients and T-ALL cell lines having acquired resistance to neoplastic agents, identifying potential target genes for further study in drug resistance. We tested whether our classifier could predict IF within 42 patient samples obtained from COG 8704 and, using PAM to define a smaller classifier for the U133A chip, correctly identified the single IF case and patients with persistently circulating blasts. Genetic profiling may identify T-ALL patients who are likely to fail induction and for whom alternate treatment strategies might be beneficial.

Publication Title

Identification of genomic classifiers that distinguish induction failure in T-lineage acute lymphoblastic leukemia: a report from the Children's Oncology Group.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14615
Microarray analyses of induction failure in T-ALL (COG study 9404)
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2), Affymetrix Human Genome U133A Array (hgu133a)

Description

The clinical and cytogenetic features associated with T-cell acute lymphoblastic leukemia (T-ALL) are not predictive of early treatment failure. Based on the hypothesis that microarrays might identify patients who fail therapy, we used the Affymetrix U133 Plus 2.0 chip and prediction analysis of microarrays (PAM) to profile 50 newly diagnosed patients who were treated in the Children's Oncology Group (COG) T-ALL Study 9404. We identified a 116-member genomic classifier that could accurately distinguish all 6 induction failure (IF) cases from 44 patients who achieved remission; network analyses suggest a prominent role for genes mediating cellular quiescence. Seven genes were similarly upregulated in both the genomic classifier for IF patients and T-ALL cell lines having acquired resistance to neoplastic agents, identifying potential target genes for further study in drug resistance. We tested whether our classifier could predict IF within 42 patient samples obtained from COG 8704 and, using PAM to define a smaller classifier for the U133A chip, correctly identified the single IF case and patients with persistently circulating blasts. Genetic profiling may identify T-ALL patients who are likely to fail induction and for whom alternate treatment strategies might be beneficial.

Publication Title

Identification of genomic classifiers that distinguish induction failure in T-lineage acute lymphoblastic leukemia: a report from the Children's Oncology Group.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14613
Microarray analyses of induction failure in T-ALL (COG study 8704)
  • organism-icon Homo sapiens
  • sample-icon 42 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

The clinical and cytogenetic features associated with T-cell acute lymphoblastic leukemia (T-ALL) are not predictive of early treatment failure. Based on the hypothesis that microarrays might identify patients who fail therapy, we used the Affymetrix U133 Plus 2.0 chip and prediction analysis of microarrays (PAM) to profile 50 newly diagnosed patients who were treated in the Children's Oncology Group (COG) T-ALL Study 9404. We identified a 116-member genomic classifier that could accurately distinguish all 6 induction failure (IF) cases from 44 patients who achieved remission; network analyses suggest a prominent role for genes mediating cellular quiescence. Seven genes were similarly upregulated in both the genomic classifier for IF patients and T-ALL cell lines having acquired resistance to neoplastic agents, identifying potential target genes for further study in drug resistance. We tested whether our classifier could predict IF within 42 patient samples obtained from COG 8704 and, using PAM to define a smaller classifier for the U133A chip, correctly identified the single IF case and patients with persistently circulating blasts. Genetic profiling may identify T-ALL patients who are likely to fail induction and for whom alternate treatment strategies might be beneficial.

Publication Title

Identification of genomic classifiers that distinguish induction failure in T-lineage acute lymphoblastic leukemia: a report from the Children's Oncology Group.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8607
Gene expression profiling of testicular seminoma
  • organism-icon Homo sapiens
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

Gene expression patterns of testicular seminoma were analysed applying oligonucleotide microarrays in 40 specimens of different tumour stages (pT1, pT2, pT3) and in 3 normal testes.

Publication Title

Gene signatures of testicular seminoma with emphasis on expression of ets variant gene 4.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP045708
Humanized Foxp2 Accelerates Making Transitions From Declarative to Procedural Learning
  • organism-icon Mus musculus
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerIIx

Description

Purpose: Foxp2 is the first and for now the only gene connected to speech and language in humans. Two aminoacid substitutions took place in this protein during recent human evolution, after our split from the last common ancestor with chimpanzees, and are most likely to have undergone positive selection in human lineage (Enard et al., 2002). Methods: Transgenic mice in which the wild-type (murine) version of Foxp2 was replaced with the one bearing two human-specific amino acid substitutions (i.e. "humanized" Foxp2) - Foxp2hum/hum, have been compared to their wild-type (WT) counterparts in terms of behavior, electrophysiology and striatal gene expression. The latter was analyzed through RNA-sequencing performed on pooled indexed libraries on three flow cells on Illumina GAIIx. The reads were mapped to mouse genome (mm9) by TopHat 1.4.1 and were counted using Bedtools. mRNA profiles were obtained with more than 20 million reads for every sample. Differential gene expression was analyzed with DESeq using multifactor model (Anders and Huber, 2010). Results: Wild-type and Foxp2hum/hum mice did not show any significant differences in expression at individual gene level, neither in dorsomedial nor in dorsolateral striatum. However, when genes were grouped into functional categories and analyzed accordingly, this revealed a significant downregulation of functional categories related to synaptic signalling and plasticity in dorsomedial striatum of Foxp2hum/hum mice. Overall design: RNA-sequencing was performed on dorsomedial and dorsolateral striatum of wild-type and Foxp2hum/hum mice, on three flow cells Illumina GAIIx. The libraries from each sample were indexed and pooled together.

Publication Title

Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE54257
Drug-induced liver injury
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 116 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302), Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNFα-mediated hepatotoxicity.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE54254
Expression data from human hepatocellular carcinoma cell line HepG2
  • organism-icon Homo sapiens
  • sample-icon 96 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

Drug-induced liver injury (DILI) is an important clinical problem. Here we used a genomics approach to establish the critical drug-induced toxicity pathways that act in synergy with the pro-inflammatory cytokine tumor necrosis factor (TNF) to cause cell death of liver HepG2 cells. Transcriptomics of the cell injury stress response pathways initiated by two hepatoxicants, diclofenac and carbamazepine, revealed the endoplasmic reticulum (ER) stress/translational initiation signaling and Nrf2 antioxidant signaling as two major affected pathways, which was similar to that observed for the majority of ~80 DILI compounds in primary human hepatocytes. The ER stress was primarily related to PERK and ATF4 activation and subsequent expression of CHOP, which was all independent of TNF signaling. Identical ATF4 dependent transcriptional programs were observed in primary human hepatocytes as well as primary precision cut human liver slices. Targeted RNA interference studies revealed that while ER stress signaling through IRE1 and ATF6 acted cytoprotective, activation of the ER stress protein kinase PERK and subsequent expression of CHOP was pivotal for the onset of drug/TNF-induced apoptosis. While inhibition of the Nrf2-dependent adaptive oxidative stress response enhanced the drug/TNF cytotoxicity, Nrf2 signaling did not affect CHOP expression. Both hepatotoxic drugs enhanced expression of the translational initiation factor EIF4A1, which was essential for CHOP expression and drug/TNF-mediated cell killing. Our data support a model in which enhanced drug-induced translation initiates PERK-mediated CHOP signaling in an EIF4A1 dependent manner, thereby sensitizing towards caspase-8-dependent TNF induced apoptosis.

Publication Title

Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNFα-mediated hepatotoxicity.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE54256
Expression data from primary mouse hepatocytes treated with Diclofenac
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Drug-induced liver injury (DILI) is an important clinical problem. Here we used a genomics approach to establish the critical drug-induced toxicity pathways that act in synergy with the pro-inflammatory cytokine tumor necrosis factor (TNF) to cause cell death of liver HepG2 cells. Transcriptomics of the cell injury stress response pathways initiated by two hepatoxicants, diclofenac and carbamazepine, revealed the endoplasmic reticulum (ER) stress/translational initiation signaling and Nrf2 antioxidant signaling as two major affected pathways, which was similar to that observed for the majority of ~80 DILI compounds in primary human hepatocytes. The ER stress was primarily related to PERK and ATF4 activation and subsequent expression of CHOP, which was all independent of TNF signaling. Identical ATF4 dependent transcriptional programs were observed in primary human hepatocytes as well as primary precision cut human liver slices. Targeted RNA interference studies revealed that while ER stress signaling through IRE1 and ATF6 acted cytoprotective, activation of the ER stress protein kinase PERK and subsequent expression of CHOP was pivotal for the onset of drug/TNF-induced apoptosis. While inhibition of the Nrf2-dependent adaptive oxidative stress response enhanced the drug/TNF cytotoxicity, Nrf2 signaling did not affect CHOP expression. Both hepatotoxic drugs enhanced expression of the translational initiation factor EIF4A1, which was essential for CHOP expression and drug/TNF-mediated cell killing. Our data support a model in which enhanced drug-induced translation initiates PERK-mediated CHOP signaling in an EIF4A1 dependent manner, thereby sensitizing towards caspase-8-dependent TNF induced apoptosis.

Publication Title

Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNFα-mediated hepatotoxicity.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact