refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1330 results
Sort by

Filters

Technology

Platform

accession-icon GSE54294
Gene Expression Profiling of Peri-implant Healing of PLGA-Li+ Implants Suggests an Activated Wnt Signaling Pathway in vivo
  • organism-icon Rattus norvegicus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st)

Description

Bone development and regeneration is associated with the Wnt signaling pathway that, according to literature, can be modulated by lithium ions (Li+). The aim of this study was to evaluate the gene expression profile during peri-implant healing of poly(lactic-co-glycolic acid) (PLGA) implants with incorporated Li+, while PLGA without Li+ was used as control, and a special attention was then paid to the Wnt signaling pathway. The implants were inserted in rat tibia for 7 or 28 days and the gene expression profile was investigated using a genome-wide microarray analysis. The results were verified by qPCR and immunohistochemistry. Histomorphometry was used to evaluate the possible effect of Li+ on bone regeneration. The microarray analysis revealed a large number of significantly differentially regulated genes over time within the two implant groups. The Wnt signaling pathway was significantly affected by Li+, with approximately 34% of all Wnt-related markers regulated over time, compared to 22% for non-Li+ containing (control; Ctrl) implants. Functional cluster analysis indicated skeletal system morphogenesis, cartilage development and condensation as related to Li+. The downstream Wnt target gene, FOSL1, and the extracellular protein-encoding gene, ASPN, were significantly upregulated by Li+ compared with Ctrl. The presence of -catenin, FOSL1 and ASPN positive cells was confirmed around implants of both groups. Interestingly, a significantly reduced bone area was observed over time around both implant groups. The presence of periostin and calcitonin receptor-positive cells was observed at both time points. This study is to the best of the authors knowledge the first report evaluating the effect of a local release of Li+ from PLGA at the fracture site. The present study shows that during the current time frame and with the present dose of Li+ in PLGA implants, Li+ is not an enhancer of early bone growth, although it affects the Wnt signaling pathway.

Publication Title

Gene expression profiling of peri-implant healing of PLGA-Li+ implants suggests an activated Wnt signaling pathway in vivo.

Sample Metadata Fields

Sex, Specimen part, Treatment, Time

View Samples
accession-icon GSE62155
Endogenous Wnt proteins induce differentiation and loss of pluripotency in EpiSCs
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We compared the transcriptomes of EpiSCs maintained in the presence or absence of Wnt pathway inhibitor IWP2. We screened also our gene expression data for potential markers for genuine EpiSCs, maintained in the presence of Wnt inhibition and compared with ESC expression data. We compared the transcriptomes of EpiSCs maintained in the presence or absence of IWP2. The high level of Wnt-induced differentiation occurring in conventional EpiSC cultures may have interfered with the analysis of their characteristics. By applying Wnt inhibitors we are now able to establish the properties of genuine EpiSCs.

Publication Title

Endogenous WNT signals mediate BMP-induced and spontaneous differentiation of epiblast stem cells and human embryonic stem cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE79184
CCL4 Secretion By Interleukin-15 Dendritic Cells Directs Superior Recruitment Of Cd56+ Cytolytic Lymphocytes
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

A key requisite for the success of a dendritic cell (DC)-based vaccine in treating malignancies is the capacity of the DCs to attract immune effector cells for further interaction and activation, considering crosstalk with DCs is partially regulated by cell-contact-dependent mechanisms. Although critical for therapeutic efficacy, immune cell recruitment is a largely overlooked aspect regarding optimization of DC therapy. In this paper we examine if the so-called interleukin (IL)-15 DC vaccine provides a favorable chemokine milieu for recruiting T cells, natural killer (NK) cells and gamma delta () T cells, in comparison with the IL-4 DCs used routinely for clinical studies, as well as the underlying mechanisms of immune cell attraction by IL-15 DCs. Chemokine signaling is studied both at the RNA level, using microarray data of mature DCs, and functional level, by means of a transwell chemotaxis assay. Important to note, the classic IL-4 DC vaccine falls short to attract the required immune effector lymphocytes, whereas the IL-15 DCs provide a favorable chemokine milieu for recruiting all cytolytic effector cells. The elevated secretion of the chemokine (C-C motif) ligand 4 (CCL4), also known as macrophage inflammatory protein-1 (MIP-1), by IL-15 DCs underlies the enhanced migratory responsiveness of T cells, NK cells and T cells. Namely, neutralizing its receptor CCR5 resulted in a significant drop in migration of the aforementioned effector cells towards IL-15 DCs. These findings should be kept in mind in the design of future DC-based cancer vaccines.

Publication Title

Desirable cytolytic immune effector cell recruitment by interleukin-15 dendritic cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE97010
The Impact of Acute Exposure to Cigarette Smoke on Airway Gene Expression
  • organism-icon Homo sapiens
  • sample-icon 126 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

BACKGROUND: We have previously reported gene expression changes in the bronchial airway epithelium of active chronic smokers. In this study, we investigate the effects of Acute Smoke Exposure (ASE) from cigarettes on airway epithelial gene expression. METHODS: Bronchial airway epithelial cell brushings were collected via fiberoptic bronchoscopy from 63 individuals without recent exposure to cigarette smoke (> 2 days), at baseline and at 24 hours after smoking three cigarettes. RNA from these samples was profiled on Affymetrix Human Gene 1.0 ST microarrays. Differential gene expression was assessed using linear modeling and compared to previous smoking-related gene-expression signatures using Gene Set Enrichment Analysis (GSEA). RESULTS: We identified 91 genes differentially expressed 24-hours after exposure to three cigarettes (FDR < 0.25). ASE induces genes involved in xenobiotic metabolism, oxidative stress, and inflammation; and represses genes involved in cilium morphogenesis, and cell cycle. Genes induced by in vivo ASE are concordantly altered by ASE in vitro. While many genes altered by ASE are altered similarly in the airway of chronic smokers, metallothionein genes were induced by ASE and suppressed among chronic smokers. Metallothioneins were also suppressed in the bronchial airway of current and former chronic smokers with lung cancer relative to those with benign disease. CONCLUSIONS: Acute exposure to as little as three cigarettes alters gene-expression in bronchial airway epithelium in a manner that largely resembles the changes seen in chronic active smokers. The difference in the short-term and long-term effects of smoking on metallothionein expression and its relationship to lung cancer requires further study given these enzymes role in responding to oxidative stress.

Publication Title

Impact of acute exposure to cigarette smoke on airway gene expression.

Sample Metadata Fields

Sex

View Samples
accession-icon SRP048799
Bmp4-induced differentiation of EpiSCs depends on Wnt signals
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We used RNA-Seq to analyse the interactions between Bmp4 and Wnt at a genome-wide level in EpiSCs treated for 48 hrs with Bmp4 and/or Wnt3a in the presence of Activin and bFGF. Overall design: Control EpiSC were cultured in the presence of IWP2 for 48h. Cells were cultured with BMP4 with or without IWP2; Wnt3a and Wnt3a with BMP4 for 48h.

Publication Title

Endogenous WNT signals mediate BMP-induced and spontaneous differentiation of epiblast stem cells and human embryonic stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE79959
Expression profiling of colorectal cancer (CRC) tissue samples with microsatellite instability (MSI)
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

As part of a genomic profiling study of CRCs with MSI, we have performed genome-wide expression analyses of a consecutive patient series.

Publication Title

Multilevel genomics of colorectal cancers with microsatellite instability-clinical impact of JAK1 mutations and consensus molecular subtype 1.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE72780
Intestinal epithelial cells from Crohn's Disease patients
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Inflammatory Bowel Diseases are associated with marked alterations of IECs with a subsequent loss of barrier function.

Publication Title

Rho-A prenylation and signaling link epithelial homeostasis to intestinal inflammation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE72781
GGTase-I deletion in Intestinal Epithelial Cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Prenylation is a post-translational modification of proteins consisting on the attachment of a lipid residue (isoprenoid). GGTase-I is one of the prenyltransferases catalyzing prenylation.

Publication Title

Rho-A prenylation and signaling link epithelial homeostasis to intestinal inflammation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE77173
Gene expression profiling of Mec-1 cells upon chronic silencing of HIF-1a
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

This experiment was carried out in the context of a study aimed to identify the function of the transcription facotrs HIF-1a in the pathogenesis of chronic lymphocytic leukemia (CLL).

Publication Title

HIF-1α regulates the interaction of chronic lymphocytic leukemia cells with the tumor microenvironment.

Sample Metadata Fields

Sex, Cell line

View Samples
accession-icon GSE18446
BCR-ABL enhances differentiation of long-term repopulating hematopoietic stem cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The biology of chronic myeloid leukemia (CML)-stem cells is still incompletely understood. Therefore, we previously developed an inducible transgenic mouse model in which stem cell targeted induction of BCR-ABL expression leads to chronic phase CML-like disease. Here, we now demonstrate that the disease is transplantable using BCR-ABL positive LSK cells (lin-Sca-1+c-kit+). Interestingly, the phenotype is enhanced when unfractionated bone marrow (BM) cells are transplanted. However, neither progenitor cells (lin-Sca-1-c-kit+) nor mature granulocytes (CD11b+Gr-1+), or potential stem cell niche cells were able to transmit the disease or alter the phenotype. The phenotype was largely independent of BCR ABL priming prior to transplant. However, BCR-ABL abrogated the potential of LSK cells to induce full blown disease in secondary recipients. Subsequently, we found that BCR-ABL increased the fraction of multipotent progenitor cells (MPP) at the expense of long term HSC (LT-HSC) in the BM. Microarray analyses of LSK cells revealed that BCR-ABL alters the expression of genes involved in proliferation, survival, and hematopoietic development. Our results suggest that BCR-ABL induces differentiation of LT-HSC and decreases their self renewal capacity. Furthermore, reversion of BCR-ABL eradicates mature cells while leukemic stem cells persist, giving rise to relapsed CML upon re-induction of BCR-ABL.

Publication Title

BCR-ABL enhances differentiation of long-term repopulating hematopoietic stem cells.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact