refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1553 results
Sort by

Filters

Technology

Platform

accession-icon GSE9151
Allergen induced gene expression of airway epithelial cells shows a possible role for TNF-
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Response to allergen was studied in bronchial epithelial cell line H292. Cells were cultured and subsequently exposed to House dust mite or vessel (saline)

Publication Title

Allergen induced gene expression of airway epithelial cells shows a possible role for TNF-alpha.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9150
Primary nasal epithelium exposed to house dust mite extract shows activated expression in allergics
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Response to allergen was studied in epithelial cells derived from allergic pantients and from healthy controls. Cells were cultured after isolation from a nasal biopsy. Cells were exposed to Housed dust mite or vessel (saline)

Publication Title

Primary nasal epithelium exposed to house dust mite extract shows activated expression in allergic individuals.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE44037
Expression data from airway epithelial cells from patients with asthma, rhinitis, and helathy controls
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

The link between upper and lower airways in patients with both asthma and allergic rhinitis is still poorly understood. As the biological complexity of these disorders can be captured by gene expression profiling we hypothesized that the clinical expression of rhinitis and/or asthma is related to differential gene expression between upper and lower airways epithelium.

Publication Title

The impact of allergic rhinitis and asthma on human nasal and bronchial epithelial gene expression.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE62155
Endogenous Wnt proteins induce differentiation and loss of pluripotency in EpiSCs
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We compared the transcriptomes of EpiSCs maintained in the presence or absence of Wnt pathway inhibitor IWP2. We screened also our gene expression data for potential markers for genuine EpiSCs, maintained in the presence of Wnt inhibition and compared with ESC expression data. We compared the transcriptomes of EpiSCs maintained in the presence or absence of IWP2. The high level of Wnt-induced differentiation occurring in conventional EpiSC cultures may have interfered with the analysis of their characteristics. By applying Wnt inhibitors we are now able to establish the properties of genuine EpiSCs.

Publication Title

Endogenous WNT signals mediate BMP-induced and spontaneous differentiation of epiblast stem cells and human embryonic stem cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP048799
Bmp4-induced differentiation of EpiSCs depends on Wnt signals
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We used RNA-Seq to analyse the interactions between Bmp4 and Wnt at a genome-wide level in EpiSCs treated for 48 hrs with Bmp4 and/or Wnt3a in the presence of Activin and bFGF. Overall design: Control EpiSC were cultured in the presence of IWP2 for 48h. Cells were cultured with BMP4 with or without IWP2; Wnt3a and Wnt3a with BMP4 for 48h.

Publication Title

Endogenous WNT signals mediate BMP-induced and spontaneous differentiation of epiblast stem cells and human embryonic stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE73489
Gene expression profiling from pooled samples of liver tissue of liver MyD88 WT mice and MyD88 liver specific KO mice fed either with a control diet or a high-fat diet.
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Mice wild type or knocked-out for the MyD88 gene specifically in liver, were recruited for this expression profiling experiment. Each group of mice (WT versus LKO) were fed with a control diet or a high fat diet. Then mice were sacrificed and liver samples form were processed for RNA extraction. Total liver RNA of each sample was then pooled with those of the same group and treatment for microarray hybridization.

Publication Title

Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE56852
Gene expression profiling from pooled samples of subcutaneous adipose tissue of NAPE-WT or NAPE-KO mice fed either with a control diet or a high-fat diet.
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Mice knocked-out or wild type for the NAPE PLD gene specifically in adipose tissue, were recruited for this expression profiling experiment. Each group of mice (WT versus cKO) were fed with a control diet or a high fat diet. Then mice were sacrificed and adipose tissue samples form the subcutaneous adipose tissue were processed for RNA extraction. Total RNA of each sample was then pooled with those of the same group and treatment for microarray hybridization.

Publication Title

Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE1919
Rheumatoid arthritis
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95A Array (hgu95a)

Description

Rheumatoid arthritis (RA) is a chronic, inflammatory joint disease of unknown etiology and pronounced inter-patient heterogeneity. To characterize RA at the molecular level and to uncover key pathomechanisms, we performed whole-genome gene expression analyses. Synovial tissues from rheumatoid arthritis patients were compared to those from osteoarthritis patients and to normal donors.

Publication Title

Molecular signatures and new candidates to target the pathogenesis of rheumatoid arthritis.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE62821
EIF4E AND EIF4GI HAVE DISTINCT AND DIFFERENTIAL IMPRINTS ON MULTIPLE MYELOMA'S PROTEOME AND SIGNALING
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Accumulating data indicate translation plays a role in cancer biology, particularly its rate limiting stage of initiation. Despite this evolving recognition, the function and importance of specific translation initiation factors is unresolved. The eukaryotic translation initiation complex eIF4F consists of eIF4E and eIF4G at a 1:1 ratio. Although it is expected that they display interdependent functions, several publications suggest independent mechanisms. This study is the first to directly assess the relative contribution of eIF4F components to the expressed cellular proteome, transcription factors, microRNAs, and phenotype in a malignancy known for extensive protein synthesis- multiple myeloma (MM). Previously, we have shown that eIF4E/eIF4GI attenuation (siRNA/ Avastin) deleteriously affected MM cells' fate and reduced levels of eIF4E/eIF4GI established targets. Here, we demonstrated that eIF4E/eIF4GI indeed have individual influences on cell proteome. We used an objective, high throughput assay of mRNA microarrays to examine the significance of eIF4E/eIF4GI silencing to several cellular facets such as transcription factors, microRNAs and phenotype. We showed different imprints for eIF4E and eIF4GI in all assayed aspects. These results promote our understanding of the relative contribution and importance of eIF4E and eIF4GI to the malignant phenotype and shed light on their function in eIF4F translation initiation complex.

Publication Title

eIF4E and eIF4GI have distinct and differential imprints on multiple myeloma's proteome and signaling.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon E-TABM-112
Transcription profiling of barley embryo-derived tissue from Steptoe x Morex doubled-haploid lines and from the parental cultivars
  • organism-icon Hordeum vulgare
  • sample-icon 156 Downloadable Samples
  • Technology Badge Icon Affymetrix Barley Genome Array (barley1)

Description

We measured mRNA abundance in the embryogenic tissue of 150 recombinant Steptoe x Morex doubled-haploid lines (no replicates) and in parental genotypes, Steptoe and Morex, 3 replicates each, total 156 chips.

Publication Title

SFP genotyping from affymetrix arrays is robust but largely detects cis-acting expression regulators.

Sample Metadata Fields

Age, Specimen part, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact