refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1417 results
Sort by

Filters

Technology

Platform

accession-icon GSE25742
Genome-wide profiling of whole blood from patients with defects in Toll-like receptors (TLRs) and IL-1Rs (the TIR pathway) signaling
  • organism-icon Homo sapiens
  • sample-icon 365 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

The objective of this study is to: 1) Characterize the innate immune responsiveness of patients with inborn errors in Toll-IL1 receptor signaling pathway (IRAK4, MyD88 deficiencies) compared to healthy subjects, through the analysis of blood leukocytes' transcriptional profiles after stimulation with ligands for the whole set of Toll-like receptors and IL-1Rs plus whole bacteria. 2) Understand the redundancies in TLR pathway in humans. 3) Explore the use of blood profiling approaches to assess the immune status of an individual by using Primary Immune Deficiencies as a proof of principle.

Publication Title

A narrow repertoire of transcriptional modules responsive to pyogenic bacteria is impaired in patients carrying loss-of-function mutations in MYD88 or IRAK4.

Sample Metadata Fields

Sex, Race

View Samples
accession-icon GSE13300
IRAK-4- and MyD88-dependent pathways are essential for the removal of developing autoreactive B cells in humans
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Most autoreactive B cells are normally counterselected during early B cell development. To determine whether Toll-like receptors (TLRs) regulate the removal of autoreactive B lymphocytes, we tested the reactivity of recombinant antibodies from single B cells isolated from patients deficient for IL-1R-associated kinase (IRAK)-4, myeloid differentiation factor 88 (MyD88) and UNC-93B. Indeed, all TLRs except TLR3 require IRAK-4 and MyD88 to signal and UNC-93B-deficient cells are unresponsive to TLR3, TLR7, TLR8 and TLR9. All patients suffered from defective central and peripheral B cell tolerance checkpoints resulting in the accumulation of large numbers of autoreactive mature nave B cells in their blood. Hence, TLR7, TLR8, and TLR9 may prevent the recruitment of developing autoreactive B cells in healthy donors. Paradoxically, IRAK-4-, MyD88- and UNC-93B-deficient patients did not display autoreactive antibodies in their serum nor developed autoimmune diseases, suggesting that IRAK-4, MyD88 and UNC-93B pathway blockade may thwart autoimmunity in humans.

Publication Title

IRAK-4- and MyD88-dependent pathways are essential for the removal of developing autoreactive B cells in humans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP029466
Homeostatic skin contains two different subsets of resident macrophages with distinct origin and gene profile.
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

We have found the existence of two independent populations contributing to the skin-resident macrophage pool based on their different origin. We have analyzed their gene profile by deep-sequencing (RNA-Seq). Analysis of RNA-Seq data revealed a differential expression signature between both subsets of skin macrophages for 744 of 17741 genes compiled (198 of them showing similar normalized expression levels across replicates). We have further characterized their specialized functions related to their different gene profiles. Overall design: Examination of gene profile of 2 different macrophage subsets coexisting in skin under steady state.

Publication Title

Pivotal role for skin transendothelial radio-resistant anti-inflammatory macrophages in tissue repair.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP089833
Comparative principles of DNA methylation reprogramming during human and mouse in vitro primordial germ cell specification [Mouse and Human RNA-seq and BS-seq]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

Primordial germ cell (PGC) development is characterized by global epigenetic remodeling, which resets genomic potential and establishes an epigenetic ground state. Here we recapitulate PGC specification in vitro from naive embryonic stem cells and characterize the early events of epigenetic reprogramming during the formation of the human and mouse germline. Following rapid de novo DNA methylation during priming to epiblast-like cells, methylation is globally erased in PGC-like cells (PGCLCs). Repressive chromatin marks (H3K9me2/3) and transposable elements are enriched at demethylation resistant regions, while active chromatin marks (H3K4me3 or H3K27ac) are more prominent at regions that demethylate faster. The dynamics of specification and epigenetic reprogramming show species-specific differences, in particular markedly slower reprogramming kinetics in the human germline. Differences in developmental kinetics between species may be explained by differential regulation of epigenetic modifiers. Our work establishes a robust and faithful experimental system of the early events of epigenetic reprogramming and its regulation in the germline. Overall design: mRNA-seq, BS-seq and PBAT of different time-points during human and mouse in vitro PGC-like cell specification

Publication Title

Comparative Principles of DNA Methylation Reprogramming during Human and Mouse In Vitro Primordial Germ Cell Specification.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE89634
Expression data from NKG2A/C/E+ and negative CD4 effectors after influenza A infection
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

CD4 T cells can differentiate into a hetergenous population of effector T cells. A population of cytotoxic CD4 T cells can be generated against influenza challenge, however identifying these cells have been challenging. The expression of NKG2A/C/E on CD4 T cells identifies CD4 T cells with cytotoxic potential thus allowing further characterization of this subset of CD4 effector cells.

Publication Title

NKG2C/E Marks the Unique Cytotoxic CD4 T Cell Subset, ThCTL, Generated by Influenza Infection.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17362
miRNA expression, mRNA expression upon miRNA reconstitution, and direct mRNA target identification in prostate cancer cell lines
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE22979
Profiling of direct mRNA targets of miR-130a, miR-203 and miR-205 in prostate cancer cell line LNCaP
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Micro RNAs (miRNAs) miR-130a, miR-203 and miR-205 are jointly downregulated in prostate cancer and act as repressors of AR-signaling. MiRNAs are small non-coding RNAs that regulate the expression of specific mRNA targets mainly by translational repression, mRNA deadenylation or cleavage. Reconstitution of these lost miRNAs in the LNCaP PCa cell line cause morphology changes, growth arrest, and apoptosis, increasing when the miRNAs were co-expressed. This series identifies direct targets of miR-130a, miR-203, and miR-205 by AGO2-RNA co-immunoprecipitation as described by (Beitzinger et al. 2007) upon miRNA reconstitution in LNCaP cells and analyzing AGO2-bound mRNAs using Affymetrix Genechips. Relative levels of AGO2 bound versus total RNA expression were compared between miRNA reconstituted and miR-scr transfected samples.

Publication Title

MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE17315
mRNA expression upon reconstitution of miR-130a, miR-203 and miR-205 in prostate cancer cell line LNCaP
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Micro RNAs (miRNAs) miR-130a, miR-203 and miR-205 are jointly downregulated in prostate cancer and act as repressors of AR-signaling. MiRNAs are small non-coding RNAs that regulate the expression of specific mRNA targets mainly by translational repression, mRNA deadenylation or cleavage. Reconstitution of these lost miRNAs in the LNCaP PCa cell line cause morphology changes, growth arrest, and apoptosis, increasing when the miRNAs were co-expressed. Bioinformatic target prediction, mRNA expression and protein expression analysis upon overexpression of these miRNAs congruently identified targets known to be overexpressed in PCa and to be involved in AR trans-activation. This series profiles loss in mRNA expression in LNCaP cells transfected with one of the three miRNAs miR-130a, miR-203 and miR-205 compared to LNCaP cells transfected with a scramble miRNA.

Publication Title

MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE85
wild type and aire -/- murine meduallary thymic epithelial cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Mice used were B6/129 F2's, 3-5 weeks of age, either wild type or with both copies of the autoimmune regulator gene (aire, GenBank #AF079536) disrupted. Thymi from five of these mice of both sexes were removed and pooled. After collagenase/dispase digestion, density gradient fractionation, and fluorescent antibody staining, cells with the phenotype CD45-, G8.8+, CDR1int and B7.1hi were FACS-sorted and total RNA was made from them. RNA was twice-amplified using a T7 polymerase-based method.

Publication Title

Projection of an immunological self shadow within the thymus by the aire protein.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8052
Genetic variants regulating ORMDL3 expression are determinants of susceptibility to childhood asthma
  • organism-icon Homo sapiens
  • sample-icon 394 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Asthma is caused by a combination of poorly understood genetic and environmental factors. We found multiple markers on chromosome 17q21 to be strongly and reproducibly associated with childhood onset asthma in family and case-referent panels with a combined P < 10-12. In independent replication studies the 17q21 locus showed strong association with diagnosis of childhood asthma in 2,320 subjects from a cohort of German children (P = 0.0003) and in 3,301 subjects from the British 1958 Birth Cohort (P = 0.0005). We systematically evaluated the relationships between markers of the 17q21 locus and transcript levels of genes in EBV-transformed lymphoblastoid cell lines from children in the asthma family panel used in our association study. The SNPs associated with childhood asthma were consistently and strongly associated (P <10-22) in cis with transcript levels of ORMDL3, a member of a gene family that encode transmembrane proteins anchored in the endoplasmic reticulum. The results indicate that genetic variants regulating ORMDL3 expression are determinants of susceptibility to childhood asthma.

Publication Title

Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma.

Sample Metadata Fields

Sex

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact