refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 14769 results
Sort by

Filters

Technology

Platform

accession-icon GSE4115
Airway Epithelial Gene Expression Diagnostic for the Evaluation of Smokers with Suspect Lung Cancer
  • organism-icon Homo sapiens
  • sample-icon 192 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

RNA was obtained from histologically normal bronchial epithelium of smokers during time of clinical bronchoscopy from relatively accessible airway tissue. Gene expression data from smokers with lung cancer was compared with samples from smokers without lung cancer. This allowed us to generate a diagnostic gene expression profile that could distinguish the two classes. This profile could provide additional clinical benefit in diagnosing cancer amongst smokers with suspect lung cancer.

Publication Title

Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer.

Sample Metadata Fields

Sex, Age, Race

View Samples
accession-icon GSE7895
Reversible and Permanent effects of Tobacco Smoke Exposure on Airway Epithelial Gene Expression
  • organism-icon Homo sapiens
  • sample-icon 104 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

RNA was obtained from histologically normal bronchial epithelium of never, former, and current smokers undergoing fiberoptic bronchoscopy.

Publication Title

Reversible and permanent effects of tobacco smoke exposure on airway epithelial gene expression.

Sample Metadata Fields

Age

View Samples
accession-icon GSE994
Effects of cigarette smoke on the human airway epithelial cell transcriptome
  • organism-icon Homo sapiens
  • sample-icon 75 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

A number of studies have shown that cigarette smoking produces a field defect, such that genetic mutations induced by smoking occur throughout the lung and its intra and extra-pulmonary airways. Based on this concept, we have begun this study, which has as its goal the definition of the normal airway transcriptome, an analysis of how that transcriptome is affected by cigarette smoke, and to explore the reversibility of altered gene expression when smoking has been discontinued. We have obtained brushings from intra-pulmonary airways (the right upper lobe carina) and scrapings from the buccal mucosa, from normal smoking and non-smoking volunteers (including 34 Current Smokers, 23 Never Smokers and 18 Former Smokers). RNA was isolated from these samples and gene expression profiles from intra-pulmonary airway epithelial cells were analyzed using Affymetrix U133A human gene expression arrays. All microarray data from the experiments described above have been stored, preprocessed and analyzed in a relational MySQL database that is accessible through our website at http://pulm.bumc.bu.edu/aged

Publication Title

Effects of cigarette smoke on the human airway epithelial cell transcriptome.

Sample Metadata Fields

Sex, Age, Specimen part, Race, Subject

View Samples
accession-icon GSE19027
Antioxidant response gene expression in the bronchial airway epithelial cells of smokers at risk for lung cancer
  • organism-icon Homo sapiens
  • sample-icon 58 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Prior microarray studies of smokers at high risk for lung cancer have demonstrated that heterogeneity in bronchial airway epithelial cell gene expression response to smoking can serve as an early diagnostic biomarker for lung cancer. This study examines the relationship between gene expression variation and genetic variation in a central molecular pathway (NRF2-mediated antioxidant response) associated with smoking exposure and lung cancer. We assessed global gene expression in histologically normal airway epithelial cells obtained at bronchoscopy from smokers who developed lung cancer (SC, n=20), smokers without lung cancer (SNC, n=24), and never smokers (NS, n=8). Functional enrichment showed that the NRF2-mediated antioxidant response pathway differed significantly among these groups.

Publication Title

Genetic variation and antioxidant response gene expression in the bronchial airway epithelium of smokers at risk for lung cancer.

Sample Metadata Fields

Sex, Age, Specimen part, Race, Subject

View Samples
accession-icon GSE37058
Tobacco smoke exposure-related pathway gene expression signature in the bronchial airway epithelium
  • organism-icon Homo sapiens
  • sample-icon 51 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [CDF: Brainarray Version 11.0.1, HuEx10stv2_Hs_ENTREZG (huex10st), Affymetrix Human Human Exon 1.0 ST Array (huex10st)

Description

Using primary human bronchial epithelial cells collected at bronchoscopy, we have perturbed signaling pathways important in regulation of response to tobacco smoke exposure and cancer development: ATM, BCL2, GPX1, NOS2, IKBKB, and SIRT1

Publication Title

SIRT1 pathway dysregulation in the smoke-exposed airway epithelium and lung tumor tissue.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE16873
Early Dysregulation of Cell Adhesion and Extracellular Matrix Pathways in Breast Cancer Progression
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Proliferative breast lesions, such as simple ductal hyperplasia (SH) and atypical ductal hyperplasia (ADH), are candidate precursors to ductal carcinoma in situ (DCIS) and invasive cancer. To better understand their relationship to more advanced disease, we used microdissection and DNA microarrays to profile the gene expression of patient-matched histologically normal (HN), ADH, and DCIS from 12 patients with ER+ sporadic breast cancer. SH were profiled from a subset of cases. We found 837 differentially expressed genes between DCIS-HN and 447 between ADH-HN, with >90% of the ADH-HN genes also present among the DCIS-HN genes. Only 61 genes were identified between ADH-DCIS. Expression differences were reproduced in an independent cohort of patient-matched lesions by qRT-PCR. Many breast cancer-related genes and pathways were dysregulated in ADH and maintained in DCIS. Particularly, cell adhesion and extracellular matrix (ECM) interactions were overrepresented. Focal adhesion was the top pathway in each gene set. We conclude that ADH and DCIS share highly similar gene expression and are distinct from HN. In contrast, SH appear more similar to HN. These data provide genetic evidence that ADH (but not SH) are often precursors to cancer and suggest cancer-related genetic changes, particularly adhesion and ECM pathways, are dysregulated prior to invasion and even before malignancy is apparent. These findings could lead to novel risk stratification, prevention, and treatment approaches.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE1650
COPD Study
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Comparison of severely emphysematous tissue removed at lung volume reduction surgery to that of normal or mildly emphysematous lung tissue resected from smokers with nodules suspicious for lung cancer.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE29007
Human Large Airway Epithelial Cells from healthy never and current smoker and smokers with and without lung cancer
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx, Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Characterizing the impact of smoking and lung cancer on the airway transcriptome using RNA-Seq.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE28835
Large airway epithelial cells from cigarette smokers with and without lung cancer undergoing flexible bronchoscopy in the operating room for resection of a suspicious lung nodule
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2), Illumina Genome Analyzer IIx

Description

mRNA expression was assayed from bronchial epithelial cell samples from smokers with and without lung cancer. A subset of the samples (2 of the lung cancer samples and 3 of the no cancer samples) were pooled and underwent whole transcriptome sequencing. The goals were to compare whole transcriptome sequencing gene expression levels to gene expression levels derived from these samples run on the Affymetrix HGU133A 2.0 platform.

Publication Title

Characterizing the impact of smoking and lung cancer on the airway transcriptome using RNA-Seq.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE4635
Proteomic and Genomic Profiling of Bronchial Epithelial Cells in Never and Current Smokers
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Comparison of gene and protein expression in the large airway epithelium of never and current smokers.

Publication Title

Comparison of proteomic and transcriptomic profiles in the bronchial airway epithelium of current and never smokers.

Sample Metadata Fields

Sex, Age, Specimen part, Race, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact