Rice is sensitive to chilling stress, especially at the seedling stage. To elucidate the molecular genetic mechanisms of chilling tolerance in rice, comprehensive gene expressions of two rice genotypes (chilling-tolerant LTH and chilling-sensitive IR29) with contrasting responses to chilling stress were comparatively analyzed. Results revealed distinct global transcription reprogramming between the two rice genotypes under time-series chilling stress and subsequent recovery conditions. A set of genes with higher basal expression were identified in LTH, indicating their possible role in intrinsic tolerance to chilling stress. Under chilling stress, the major effect on gene expression was up-regulation in LTH and strong repression in IR29. Early responses to chilling stress in both genotypes featured commonly up-regulated genes related to transcription regulation and signal transduction, while functional categories for late phase chilling regulated genes were diverse with a wide range of functional adaptations to continuous stress. Following the cessation of chilling treatments, there was quick and efficient reversion of gene expression in LTH, while IR29 displayed considerably slower recovering capacity at the transcriptional level. In addition, the detection of differentially-regulated TF genes and enriched cis-elements demonstrated that multiple regulatory pathways, including CBF and MYBS3 regulons, were involved in chilling stress tolerance.
Comparative transcriptome profiling of chilling stress responsiveness in two contrasting rice genotypes.
Specimen part, Time
View SamplesInhibition of calcineurin-NFAT pathway at the early stage can block somatic cell reprogramming. In order to study how the calcineurin-NFAT pathway contributes to the early stage of reprogramming, we designed this microarray experiment and tried to find out which genes or signalings were changed after inhibition of calcineurin-NFAT signaling by CSA (a specific inhibitor of calcineurin-NFAT pathway).
No associated publication
Specimen part
View SamplesRoot foraging strategy of wheat for potassium (K) heterogeneity is based on special gene expressions. Low-K responsive genes, such as peroxidases, mitochondrion, transcription factor activity, calcium ion binding and respiration, up-regulated in Sp. NK rather than in Sp. LK. Methyltransferase activity, protein amino acid phosphorylation, potassium ion transport, protein kinase activity genes were found among down-regulated genes in Sp. LK.
Potential Root Foraging Strategy of Wheat (<i>Triticum aestivum</i> L.) for Potassium Heterogeneity.
Specimen part, Treatment
View SamplesTo understand the transcriptome changes during drought tolerance in maize, the drought-tolerant line Han21 and drought-sensitive line Ye478, which show substantial differences in drought tolerance at the seedling stage, were selected for this study. Using the GeneChip Maize Genome Arrays, we applied genome-wide gene expression analysis to the two genotypes under gradual drought stress and re-watering. We identified 2172 common regulated transcripts in both lines under drought stress, with 1084 common up-regulated transcripts and 1088 common down-regulated transcripts. Among the 2172 transcripts, 58 potential protein kinases and 117 potential transcription factors were identified. The potential components of the ABA signaling pathway were identified from the common regulated transcripts. We also identified 940 differentially regulated transcripts between the two lines. Among the 940 transcripts, the differential expression levels of 29 transporters and 15 cell wall-related transcripts may contribute to the different tolerances of the two lines. Additionally, we found that the drought-responsive genes in the tolerant Han21 line recovered more quickly when the seedlings were re-watered, and 311 transcripts in the tolerant Han21 line were exclusively up-regulated at the re-watering stage compared to the control and stress conditions. Our study provides a global characterization of two maize inbred lines during drought stress and re-watering and will be valuable for further study of the molecular mechanisms of drought tolerance in maize.
Genome-wide transcriptome analysis of two maize inbred lines under drought stress.
Specimen part
View SamplesGenome-wide gene responses in a transgenic rice line carrying the maize resistance gene Rxo1 to the rice bacterial streak pathogen, Xanthomonas oryzae pv. oryzicola
Genome-wide gene responses in a transgenic rice line carrying the maize resistance gene Rxo1 to the rice bacterial streak pathogen, Xanthomonas oryzae pv. oryzicola.
Specimen part
View SamplesA near-isogenic rice line CSSL50-1 with high chalkiness and Asominori (the parental line) with normal grain endosperm were used for comparative studies of rice grain endosperm chalkiness,transcriptome comparison of 15 DAF caryopses using Affymetrix rice GeneChip identified differential expressed genes between these two lines.
Transcriptome analysis of grain-filling caryopses reveals involvement of multiple regulatory pathways in chalky grain formation in rice.
Age, Specimen part, Time
View SamplesWe identified and characterized a rice epigenetic mutant Epi-df which exhibits a dwarf stature and various floral defects that are inherited in a dominant fashion. We demonstrated that Epi-df participates in Polycomb repressive complex 2 (PRC2) mediated gene silencing. Epigenetic mutations results in ectopic expression of Epi-df and pleiotropic developmental defects in mutant plants. Moreover, ectopic expression of Epi-df leads to mis-regulated H3K27me3 and changed expression of hundreds of genes involved in a wide range of biological processes.
Identification and characterization of an epi-allele of FIE1 reveals a regulatory linkage between two epigenetic marks in rice.
Specimen part
View SamplesGlyphosate (GLY) is an effective antimetabolite that acts against the shikimate pathway 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase, However, little is known about the genome-scale transcriptional responses of bacteria after glyphosate shock. To investigate further the mechanisms by which E. coli response to a glyphosate shock, a DNA-based microarray was used for transcriptional analysis of E. coli exposed to 200 mM glyphosate.
Genome-wide transcriptional responses of Escherichia coli to glyphosate, a potent inhibitor of the shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase.
Treatment
View SamplesA1501 aroA is a gene derived from Pseudomonas stutzeri A1501, encoding a class II glyphosate-tolerant EPSP synthase. To understand the effect of class II EPSP synthase to E. coli under glyphosate shock, we constructed the class II EPSP synthase-expressing plasmid pUC-A1501. And pUC18 is the empty vector used as a control.
No associated publication
No sample metadata fields
View SamplesIn order to elucidate the molecular mechanism of gibberellin (GA)-induced mesocotyl elongation, gene expression profiling analyses were performed in a deep-sowing tolerant maize inbred line 3681-4. Gene expression studies combing Affymetrix GeneChip analysis and Real-time PCR were employed to determine the molecular mechanism underlying GA promotion of maize mesocotyl elongation. These studies showed that the GA receptor GID1, the transcriptional factor MYB, and the genes encoding DELLA protein DWRF8, kinases, Raf, LRR, RLCK, and involved in flavonoid biosynthesis, aminosugars metabolism, cell wall synthesis and modification, might play critical roles in maize mesocotyl elongation.
No associated publication
No sample metadata fields
View Samples