refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 12256 results
Sort by

Filters

Technology

Platform

accession-icon GSE8391
Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component
  • organism-icon Drosophila melanogaster
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2), Affymetrix Drosophila Genome Array (drosgenome1)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE25899
Paternally-induced transgenerational environmental reprogramming of metabolic gene expression in mammals
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE51455
Expression data from diploid and aneuoploid human pluripotent stem cells, teratomas derived from them, and pluripotent-like cells recovered from these teratomas
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human pluripotent stem cells (hPSCs) tend to acquire genomic aberrations in culture, the most common of which is the trisomy of chromosome 12. Interestingly, trisomy 12 is also prevalent in germ cell tumors (GCTs). Here, we aimed to dissect the cellular and molecular implications of trisomy 12 in hPSCs. A genome-wide gene expression analysis revealed that trisomy 12 profoundly affects the global gene expression profile of hPSCs, inducing a transcriptional program very similar to that of CGTs. Direct comparison of the proliferation, replication, differentiation and apoptosis between diploid and aneuploid hPSCs revealed that trisomy 12 significantly increases the proliferation rate of hPSCs. Increased replication largely accounts for the increased proliferation observed, and may explain the selection advantage that trisomy 12 confers to hPSCs. A comparison of the tumors induced by diploid and aneuploid hPSCs further demonstrated that trisomy 12 increases the tumorigenicity of hPSCs, inducing transcriptionally-distinct teratomas, from which pluripotent cells can be recovered. Lastly, a chemical screen of 89 anticancer drugs against diploid and aneuploid hPSCs discovered that trisomy 12 raises the sensitivity of hPSCs to several replication inhibitors, suggesting that the increased proliferation and tumorigenicity of these aberrant cells also makes them more vulnerable, and might potentially be used for their selective elimination from culture. Together, our findings demonstrate the extensive effect of trisomy 12 on the gene expression signature and on the cellular behavior of hPSCs, and highlight the danger posed by this trisomy for the successful use of hPSCs in basic research and in regenerative medicine.

Publication Title

Aneuploidy induces profound changes in gene expression, proliferation and tumorigenicity of human pluripotent stem cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE23211
Expression data from PSARK::IPT and wildtype rice plants
  • organism-icon Oryza sativa
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

Transgenic rice plants expressing isopentenyltransferase (IPT), an enzyme that catalyzes the rate-limiting step in CK synthesis under the control of SARK, a maturation- and stress-inducible promoter. Increased CK production resulted in sink source alteration and enhanced drought tolerance of the transgenic plants.

Publication Title

Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE7646
CLK targets from fly heads
  • organism-icon Drosophila melanogaster
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

CLK targets from fly heads using the TIM-GAL4; UAS-CLKGR line

Publication Title

Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE84887
Molecular Characterization of Down Syndrome Embryonic Stem Cells Reveals a Role for RUNX1 in Neural Differentiation
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Down syndrome (DS) is the leading genetic cause of mental retardation and is caused by a third copy of human chromosome 21. The different pathologies of DS involve many tissues with a distinct array of neural phenotypes. Here we characterize new embryonic stem cell lines with DS (DS-ESCs), and focus on the neural aspects of the diease. Our results show that neural progenitor cells (NPCs) differentiated from five independent DS-ESC lines display increased apoptosis and down-regulation of forehead developmental genes. Analysis of differentially expressed genes suggested RUNX1 as a key transcription regulator in DS-NPCs. Using genome editing we were able to disrupt all three copies of RUNX1 in DS-ESCs, leading to down-regulation of several RUNX1 target developmental genes accompanied by reduced apoptosis and neuron migration. Our work sheds new light on the role of RUNX1 and the importance of dosage balance in the development of neural phenotypes in DS.

Publication Title

Molecular Characterization of Down Syndrome Embryonic Stem Cells Reveals a Role for RUNX1 in Neural Differentiation.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE21262
Expression data from undifferentiated and induced human pluripotent stem cells
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Due to their somatic cell origin, human induced pluripotent stem cells (HiPSCs) are assumed to carry a normal diploid genome, and adaptive chromosomal aberrations have not been fully evaluated. Here, we analyzed the chromosomal integrity of 66 HiPSC and 38 human embryonic stem cell (HESC) samples from 18 different studies by global gene expression meta-analysis. We report identification of a substantial number of cell lines carrying full and partial chromosomal aberrations, half of which were validated at the DNA level. Several aberrations resulted from culture adaptation, and others are suspected to originate from the parent somatic cell. Our classification revealed a third type of aneuploidy already evident in early passage HiPSCs, suggesting considerable selective pressure during the reprogramming process. The analysis indicated high incidence of chromosome 12 duplications, resulting in significant enrichment for cell cycle related genes. Such aneuploidy may limit the differentiation capacity and increase the tumorigenicity of HiPSCs.

Publication Title

Identification and classification of chromosomal aberrations in human induced pluripotent stem cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE3215
Gene Expression for fetal kidneys of hyper insulinemia induced intrauterine growth restriction rat model
  • organism-icon Rattus norvegicus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

Inrauterine growth restriction was induced by chronic hyper insulinemia in pregnant rats and differential gene expression was studied using affymetrix rat genome RAE230A.Data was analysed using SAM.

Publication Title

Adult hypertension in intrauterine growth-restricted offspring of hyperinsulinemic rats: evidence of subtle renal damage.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7652
Timepoints Control strain
  • organism-icon Drosophila melanogaster
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

6 Timepoint microarray from control strain

Publication Title

Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7651
Timepoints 5073 strain
  • organism-icon Drosophila melanogaster
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

6 Timepoints from 5073 strain

Publication Title

Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact