Analysis of differential gene expression for rutured vs stable abdominal aortic aneurysms (AAA) and for intermediate size (55mm) vs large (>70mm) AAA.
Molecular Fingerprint for Terminal Abdominal Aortic Aneurysm Disease.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Adam17 Deficiency Promotes Atherosclerosis by Enhanced TNFR2 Signaling in Mice.
Sex
View SamplesGene expression analysis in tissues of Adam17 hypomorphic and wildtype control C57BL/6 mice.
Adam17 Deficiency Promotes Atherosclerosis by Enhanced TNFR2 Signaling in Mice.
Sex
View SamplesGene expression analysis in tissues of Adam17 hypomorphic and wildtype control C57BL/6 mice.
Adam17 Deficiency Promotes Atherosclerosis by Enhanced TNFR2 Signaling in Mice.
Sex
View SamplesPelizaeus-Merzbacher disease (PMD) is a severe hypomyelinating disease, characterized by ataxia, intellectual disability, epilepsy and premature death. In the majority of cases, PMD is caused by duplication of PLP1 that is expressed in myelinating oligodendrocytes. Despite detailed knowledge of PLP1, there is presently no curative therapy for PMD. We used a Plp1 transgenic PMD mouse model to test the therapeutic effect of Lonaprisan, an antagonist of the nuclear progesterone receptor, in lowering Plp1 mRNA overexpression. We applied placebo-controlled Lonaprisan therapy to PMD mice for 10 weeks and performed the grid slip analysis to assess the clinical phenotype. Additionally, mRNA expression and protein accumulation as well as histological analysis of the central nervous system were performed. While Plp1 mRNA levels are increased about 1.8-fold in PMD mice compared to wildtype controls, daily Lonaprisan treatment reduced overexpression at the RNA level up to 1.5-fold, which was sufficient to significantly improve a poor motor phenotype. Electron microscopy confirmed a 25% increase in the number of myelinated axons in the corticospinal tract when compared to untreated PMD mice. Microarray analysis revealed the upregulation of pro-apoptotic genes in PMD mice that could be partially rescued by Lonaprisan treatment, which also reduced microgliosis, astrogliosis, and lymphocyte infiltration.
Progesterone antagonist therapy in a Pelizaeus-Merzbacher mouse model.
Sex, Age, Specimen part
View SamplesSaccharomyces cerevisiae strains carrying mutations of the essential Mediator subunit Med11 as well as strains lacking the non-essential Mediator subunits Med2 and Med20 were compared to the corresponding wild-type strains.
Mediator head subcomplex Med11/22 contains a common helix bundle building block with a specific function in transcription initiation complex stabilization
Sex, Subject
View SamplesTranscription profiling of wild type yeast strain as well as strains carrying a deletion of Gcn4, Arr1 or both. Gene expression in rich medium (YPD) and under osmotic stress conditions (YPD + 0.8M NaCl) was compared.
No associated publication
Sex
View SamplesEngineering of genetically encoded calcium indicators predominantly focused on optimizing fluorescence changes, but effects of indicator expression on host organisms have largely not been addressed. Here, we report biocompatibility and wide-spread functional expression of the genetically encoded calcium indicator TN-XXL in a transgenic mouse model. To validate the model and to characterize potential effects of indicator expression we assessed both indicator function and a variety of host parameters such as anatomy, physiology, behavior and gene expression profiles in these mice. We also demonstrate the usefulness of primary cell types and organ explants prepared from these mice for imaging applications. While we do find mild signatures of indicator expression that may guide further indicator development the green indicator mice generated provide a well characterized resource of primary cells and tissues for in vitro and in vivo calcium imaging applications.
Biocompatibility of a genetically encoded calcium indicator in a transgenic mouse model.
Specimen part
View SamplesTo characterize the transcriptome of the transcription factor AP4 DLD-1 cells were infected with AP4 coding viruses for different periods of time. Adenovirus amplification and purification was performed as previously described (He et al., 1998). The minimal amount of virus needed to reach more than 90% infection efficiency was determined by monitoring GFP signals with fluorescence microscopy. DLD-1 cells were infected in serum-free medium with adenovirus for 3 hours. After removal an equal amount of medium containing 20% FBS was added.
AP4 is a mediator of epithelial-mesenchymal transition and metastasis in colorectal cancer.
Cell line, Time
View SamplesTertiary lymphoid organs (TLOs) emerge in response to nonresolving inflammation but their roles in adaptive immunity remain unknown. Here, we explored artery TLOs (ATLOs) to delineate atherosclerosis T cell responses in apoe-/- mice during aging. Though the T cell repertoire showed systemic age-associated contractions in size and modifications in subtype composition and activation, wt and apoe-/- mice were equally affected. In contrast, ATLOs - but not wt aortae, apoe-/- aorta segments without ATLOs or atherosclerotic plaques - promoted T cell recruitment, altered characteristics of T cell motility, primed and imprinted T cells in situ, generated CD4+/FoxP3-, CD4+/FoxP3+, CD8+/FoxP3- effector and central memory cells, and converted nave CD4+/FoxP3- T cells into induced Treg cells. ATLOs also showed substantially increased antigen presentation capability by conventional dendritic cells (DCs) and monocyte-derived DCs but not by plasmacytoid DCs. Thus, the senescent immune system specifically employs ATLOs to control dichotomic atherosclerosis T cell immune responses. We assembled transcriptome maps of wt and apoe-/- aortae and aorta-draining RLNs and identified ATLOs as major sites of atherosclerosis-specific T cell responses during aging: Transcriptome atlases of wt and apoe-/- abdominal aortae and associated draining RLNs were constructed from laser capture microdissection (LCM)-based whole genome mRNA expression microarrays yielding 6 maps: wt adventitia (tissue-1); wt RLN (tissue-2); apoe-/- ATLOs (tissue-3); apoe-/- RLN (tissue-4); apoe-/- adventitia without adjacent plaques (tissue-5), and plaques (tissue-6). Several two-tissue comparisons within the transcriptome atlases are noteworthy: Unexpectedly, transcriptomes of wt and apoe-/- RLNs were virtually identical; additonal data revealed that transcriptomes of RLNs were strikingly similar to those of inguinal LNs which do not drain the aorta adventitia (as shown of India ink injection experiments of surgically exposed aortae); in sharp contrast, wt adventitia versus ATLOs revealed 1405 differentially expressed transcripts many of which encoded members of GO terms immune response and inflammatory response; the ATLO-plaque comparison also showed > 1000 differentially expressed transcripts; however, wt adventitia versus apoe-/- adventitia without plaque showed few genes (< 5 % of differentially expressed transcripts of the wt adventitia-ATLO comparison). Thus, the aorta transcriptome atlases support the conclusion that neither aorta-draining apoe-/- RLNs nor ILNs participate in atherosclerosis-specific T cell responses. In addition, they demonstrate that T cell responses in the diseased aorta are highly territorialized. Finally, these data show that the immune responses carried out in ATLOs differ significantly from those carried out in plaques. We next identified three major clusters within the transcriptome atlases through ANOVA analyses and application of strict filters: An adventitia cluster, a plaque/ATLO cluster, and a LN/plaque cluster. The total number of differentially expressed genes in each cluster were examined for GO terms immune response, inflammatory response, T cell activation, positive regulation of T cell response, and T cell proliferation. Within the adventitia cluster, similarities of transcriptomes of wt adventitia and apoe-/- adventitia without associated plaque versus ATLOs indicate that a robust number of immune response-regulating genes are selectively expressed in ATLOs which are located within a distance of few m of the adventitia without associated plaques indicating a very high degree of territoriality of the atherosclerosis T cell response. Furthermore, unlike the total number of differentially regulated transcripts, the majority of transcripts among GO terms immune response and inflammatory response, was up-regulated. Inspection of the plaque/ATLO cluster provided further information: The majority of immune response regulating genes where expressed at a higher level in ATLOs when compared to plaques though plaques also contained a significant number of immune response regulating genes; the reverse is true for genes regulating inflammation. Finally, the lymph node cluster revealed that though the majority of immune response regulating genes resides in both wt and apoe-/- RLNs (with little differences between them) ATLOs express a selected set of immune response regulating genes at a higher level when compared to LNs. In addition, the inflammatory component of ATLOs when compared to LNs is documented by the finding that many more genes regulating inflammation reside in ATLOs even when compared to those of plaques.
Generation of Aorta Transcript Atlases of Wild-Type and Apolipoprotein E-null Mice by Laser Capture Microdissection-Based mRNA Expression Microarrays.
Sex, Age, Specimen part
View Samples