refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 12258 results
Sort by

Filters

Technology

Platform

accession-icon GSE103746
Identification and validation of single sample breast cancer radiosensitivity gene expression predictors
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification and validation of single-sample breast cancer radiosensitivity gene expression predictors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE83586
Molecular classification of bladder cancer: global mRNA classification versus tumor cell phenotype classification.
  • organism-icon Homo sapiens
  • sample-icon 303 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

In this study gene expression profiles for 307 cases of advanced bladder cancers were compared to molecular phenotype at the tumor cell level. TUR-B tissue for RNA extraction was macrodissected from the close vicinity of the tissue sampled for immunohistochemistry to ensure high-quality sampling and to minimize the effects of intra-tumor heterogeneity. Despite excellent agreement between gene expression values and IHC-score at the single marker level, broad differences emerge when samples are clustered at the global mRNA versus tumor cell (IHC) levels. Classification at the different levels give different results in a systematic fashion, which implicates that analysis at both levels is required for optimal subtype-classification of bladder cancer.

Publication Title

Molecular classification of urothelial carcinoma: global mRNA classification versus tumour-cell phenotype classification.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE103744
Identification and validation of single sample breast cancer radiosensitivity gene expression predictors [Illumina HT12 v4 data]
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Purpose

Publication Title

Identification and validation of single-sample breast cancer radiosensitivity gene expression predictors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE54279
Expression microarray analysis of human pancreatic islets reveals CD59 function
  • organism-icon Homo sapiens
  • sample-icon 128 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Pancreatic islets are central in type 2-diabetes development, which coincides with increased activity of innate immunity. Intriguingly, human pancreatic islets express many complement genes. The most highly expressed gene was the complement inhibitor CD59 that is GPI anchored to the cell membrane, which unexpectedly was found in high amounts intracellularly in beta cells. Silencing of CD59 strongly suppressed insulin secretion. Importantly, this suppression was unrelated to established CD59 functions, but rather depletion of intracellular CD59. Imaging experiments identified a distal site of inhibition in the exocytotic pathway, but prior to emptying of the insulin granules. Proximity Ligation Assays pin-pointed the mechanism to impaired turnover of exocytosis-regulating SNARE-proteins and CD59 was detected in complex with VAMP2 and syntaxin. CD59 was downregulated by 24-h glucose incubations in human islets, rat cell lines and in islets from three rodent diabetes models.

Publication Title

The complement inhibitor CD59 regulates insulin secretion by modulating exocytotic events.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE60789
The Sweden Canceromics Analysis Network - Breast (SCAN-B) Initiative: a large-scale multicenter infrastructure towards implementation of breast cancer genomic analyses in the clinical routine
  • organism-icon Homo sapiens
  • sample-icon 55 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SCANB SubSeries listed below.

Publication Title

The Sweden Cancerome Analysis Network - Breast (SCAN-B) Initiative: a large-scale multicenter infrastructure towards implementation of breast cancer genomic analyses in the clinical routine.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE61093
Loss of the tumor suppressor gene AIP mediates the browning of human brown fat tumors
  • organism-icon Homo sapiens
  • sample-icon 85 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Human brown fat tumors (hibernomas) display concomitant loss of the tumor suppressor genes MEN1 and AIP. In the present study, we hypothesized that the brown fat phenotype is attributed to these mutations. Accordingly, we demonstrate that silencing of AIP in human brown preadipocytic and white fat cell lines results in the induction of the brown fat marker UCP1. In human adipocytic tumors, loss of MEN1 was found both in white (one out of 51 lipomas) and brown fat tumors. In contrast, concurrent loss of AIP was always accompanied by a brown fat morphology. We conclude that this white-to-brown phenotype switch in brown fat tumors is mediated by the loss of AIP.

Publication Title

Loss of the tumour suppressor gene AIP mediates the browning of human brown fat tumours.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18737
Epigenetic chromatin states uniquely define the developmental plasticity of murine hematopoietic stem cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Epigenetic chromatin states uniquely define the developmental plasticity of murine hematopoietic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41762
Expression data from human pancreatic islets
  • organism-icon Homo sapiens
  • sample-icon 76 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

A gene co-expression network analysis has been conducted to identify T2D-associated gene modules. Donors 1-48 were used for the initial analysis and donors 49-80 for the replication and were normalized separately in this study

Publication Title

Secreted frizzled-related protein 4 reduces insulin secretion and is overexpressed in type 2 diabetes.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE60785
The Sweden Canceromics Analysis Network - Breast (SCAN-B) Initiative: a large-scale multicenter infrastructure towards implementation of breast cancer genomic analyses in the clinical routine [microarrays]
  • organism-icon Homo sapiens
  • sample-icon 55 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Breast cancer exhibits significant molecular, pathological, and clinical heterogeneity. Current clinicopathological evaluation is imperfect for predicting outcome, which results in overtreatment for many patients, and for others, leads to death from recurrent disease. Therefore, additional criteria are needed to better personalize care and maximize treatment effectiveness and survival. To address these challenges, the Sweden Cancerome Analysis Network - Breast (SCAN-B) consortium was initiated in 2010 as a multicenter prospective study with longsighted aims to 1) analyze breast cancers with next-generation genomic technologies for translational research in a population-based manner and integrated with healthcare; 2) decipher fundamental tumor biology from these analyses; 3) utilize genomic data to develop and validate new clinically-actionable biomarker assays; and 4) build the infrastructure for real-time clinical implementation of molecular diagnostic, prognostic, and predictive tests. In the first phase, we focus on molecular profiling by next-generation RNA-sequencing on the Illumina platform. In the three years from August 30, 2010 through August 31, 2013, we have consented and enrolled 3,979 patients with primary breast cancer at the seven hospital sites in South Sweden, representing approximately 85% of eligible patients in the catchment area. Pre-operative blood samples have been collected for 3,942 (99%) patients and primary tumor specimens collected for 2,929 (74%) patients. Herein we describe the study infrastructure and present initial proof of concept results from prospective RNA-sequencing including tumor molecular subtyping and detection of driver gene mutations. We demonstrate that large-scale population-based collection and RNA-sequencing analysis of breast cancer is feasible. The SCAN-B Initiative should significantly reduce the time to discovery, validation, and clinical implementation of novel molecular diagnostic and predictive tests. We welcome the participation of additional comprehensive cancer treatment centers.

Publication Title

The Sweden Cancerome Analysis Network - Breast (SCAN-B) Initiative: a large-scale multicenter infrastructure towards implementation of breast cancer genomic analyses in the clinical routine.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41332
Transcription analysis of photocoagulated human retinal pigment epithelial cells in culture
  • organism-icon Homo sapiens
  • sample-icon 52 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

ARPE-19 cells were either laser treated or not, and analyzed 2, 6 and 24 hours after laser treatment. In addition, the cells were treated with high or low glucose (T2D complications analysis). The difference in glucose levels did not make much difference in regards to gene expression.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Cell line, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact