refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 3203 results
Sort by

Filters

Technology

Platform

accession-icon GSE100696
Expression data from Csf1r deficient rats
  • organism-icon Rattus norvegicus
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.1 ST Array (ragene21st)

Description

We used microarray to examine changes in gene expression in the absence of Csf1r in the brain and spleen.

Publication Title

Pleiotropic Impacts of Macrophage and Microglial Deficiency on Development in Rats with Targeted Mutation of the <i>Csf1r</i> Locus.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE27678
Gene expression analysis in a variety of normal, premalignant and squamous cell carcinomas of the cervix
  • organism-icon Homo sapiens
  • sample-icon 76 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We sought to apply the technologies of gene expression profiling to detect genes significant in the aetiology of cervical carcinoma . We investigated 14 normal (NAD), 11 low grade squamous intrapepithelial lesions (LSIL), 21 high grade squamous intraepithelial lesions (HSIL) and 28 squamous cell carcinomas by Affymetrix GeneChip whole transcriptome profiling. Two SCC cell lines were also included in the cohort. Normal and SILS were profiled using the Affymetrix U133A platform, while SCCs and Cell lines were profiled using the Affymetrix U133A plus 2.0 array.

Publication Title

Gain and overexpression of the oncostatin M receptor occur frequently in cervical squamous cell carcinoma and are associated with adverse clinical outcome.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE10615
Pediatric malignant germ cell tumors show characteristic transcriptome profiles
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

To compare the transcriptome profiles of the two principal histological variants of malignant germ cell tumor that occur in childhood

Publication Title

Pediatric malignant germ cell tumors show characteristic transcriptome profiles.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE49658
Human inositol polyphosphate multikinase regulates transcript-selective nuclear mRNA export to preserve genome integrity
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Messenger (m)RNA export from the nucleus is essential for eukaryotic gene expression. Here, we identify a transcript-selective nuclear export mechanism affecting certain human transcripts, enriched for functions in genome duplication and repair, controlled by inositol polyphosphate multikinase (IPMK), an enzyme catalyzing inositol polyphosphate and phosphoinositide turnover. We studied transcripts encoding RAD51, a protein essential for DNA repair by homologous recombination (HR), to characterize the mechanism underlying IPMK-regulated mRNA export. IPMK depletion or catalytic inactivation selectively decreases the nuclear export of RAD51 mRNA, and RAD51 protein abundance, thereby impairing HR. Recognition of a sequence motif in the untranslated region of RAD51 transcripts by the mRNA export factor ALY requires IPMK. Phosphatidylinositol (3,4,5)-trisphosphate (PIP3), an IPMK product, restores ALY recognition in IPMK-depleted cell extracts, suggesting a mechanism underlying transcript selection. Our findings implicate IPMK in a transcript-selective mRNA export pathway controlled by phosphoinositide turnover that preserves genome integrity in humans.

Publication Title

Human inositol polyphosphate multikinase regulates transcript-selective nuclear mRNA export to preserve genome integrity.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE48476
Wnt signalling sustains an EpiSCs subpopulation similar to primitive streak with increased mesendodermal potency
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

During gastrulation, epiblast cells are pluripotent and their fate is thought to be constrained principally by their position. Cell fate is progressively restricted by localised signalling cues from areas including the primitive streak (PS). However, it is unknown whether this restriction accompanies, at the single cell level, a reduction in potency. Investigation of these early transition events in vitro is possible via the use of Epiblast Stem Cells (EpiSCs), self-renewing pluripotent cell lines equivalent to the postimplantation epiblast. Strikingly, EpiSCs express various early lineage-specific markers in self-renewing conditions. However, it is unknown whether cells that express these markers are pluripotent, spontaneously differentiated, or biased towards specific lineages. Here we show that EpiSC are inherently heterogeneous and contain two major and mutually exclusive subpopulations with PS and neural characteristics respectively. Using differentiation assays and embryo grafting we demonstrate that PS-like EpiSCs are biased towards mesoderm and endoderm differentiation but they still retain their pluripotent character. The acquisition of a PS character by undifferentiated EpiSC is mediated by paracrine Wnt signalling. Elevation of Wnt activity promotes further restriction into PS-associated cell fates which occurs via the generation of distinct clonal mesendodermal and neuromesodermal precursors. Collectively, our data suggest that primed pluripotency encompasses a range of reversible lineage-biased states reflecting the birth of pioneer lineage precursors from a pool of uncommitted EpiSCs similar to the earliest cell fate restriction events taking place in the gastrula-stage epiblast.

Publication Title

Distinct Wnt-driven primitive streak-like populations reflect in vivo lineage precursors.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP158653
Mus musculus strain:C57BL/6J | breed:WT and SerpinBR380A Genome sequencing
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

SerpinB2 inhibits migration and modulates Gata6 programming in large peritoneal macrophages

Publication Title

No associated publication

Sample Metadata Fields

Sex, Age, Specimen part, Cell line

View Samples
accession-icon GSE28367
Expression and SNP data from fibroblasts, iPSCs and neurons with four copies of SNCA, and equivalent cell lines from an unaffected first degree relative
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Parkinson's disease induced pluripotent stem cells with triplication of the α-synuclein locus.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE28365
Expression data from fibroblasts, iPSCs and neurons with four copies of SNCA, and equivalent cell lines from an unaffected first degree relative
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

A major barrier to research on Parkinsons disease (PD) is inaccessibility of diseased tissue for study. One solution is to derive induced pluripotent stem cells (iPSCs) from patients with PD and differentiate them into neurons affected by disease. We created an iPSC model of PD caused by triplication of SNCA encoding -synuclein. -Synuclein dysfunction is common to all forms of PD, and SNCA triplication leads to fully penetrant familial PD with accelerated pathogenesis. After differentiation of iPSCs into neurons enriched for midbrain dopaminergic subtypes, those from the patient contain double -synuclein protein compared to those from an unaffected relative, precisely recapitulating the cause of PD in these individuals. A measurable biomarker makes this model ideal for drug screening for compounds that reduce levels of -synuclein, and for mechanistic experiments to study PD pathogenesis.

Publication Title

Parkinson's disease induced pluripotent stem cells with triplication of the α-synuclein locus.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE32199
BMP and Activin treatment of mouse extraembryonic endoderm (XEN) cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

XEN cells are derived from the primitive endoderm of mouse blastocysts. In culture and in chimeras they exhibit properties of parietal endoderm. However, BMP signaling promotes XEN cells to form an epithelium and differentiate into visceral endoderm (VE). Of the several different subtypes of VE described, BMP induces a subtype that is most similar to the VE adjacent to the trophoblast-derived extraembryonic ectoderm.

Publication Title

BMP signaling induces visceral endoderm differentiation of XEN cells and parietal endoderm.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE30792
Expression data from Parkinson's iPSCs with four copies of SNCA, and equivalent cell lines from an unaffected first degree relative
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

A major barrier to research on Parkinsons disease (PD) is inaccessibility of diseased tissue for study. One solution is to derive induced pluripotent stem cells (iPSCs) from patients with PD and differentiate them into neurons affected by disease. We created an iPSC model of PD caused by triplication of SNCA encoding -synuclein. -Synuclein dysfunction is common to all forms of PD, and SNCA triplication leads to fully penetrant familial PD with accelerated pathogenesis. After differentiation of iPSCs into neurons enriched for midbrain dopaminergic subtypes, those from the patient contain double -synuclein protein compared to those from an unaffected relative, precisely recapitulating the cause of PD in these individuals. A measurable biomarker makes this model ideal for drug screening for compounds that reduce levels of -synuclein, and for mechanistic experiments to study PD pathogenesis.

Publication Title

Parkinson's disease induced pluripotent stem cells with triplication of the α-synuclein locus.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact