refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 4211 results
Sort by

Filters

Technology

Platform

accession-icon GSE100592
Comparative cardiac induction time-courses using wild-type or genetically modified human embryonic stem cells
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This study compares directed cardiac differentiation time-courses using (i) HuES6 cells with endogenous ISL1 knockout + inducible ISL1 transgene, and (ii) wild-type HuES6 cells.

Publication Title

Revised roles of ISL1 in a hES cell-based model of human heart chamber specification.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE97627
Comparative cardiac induction time-courses using WT, EOMES KO, and EOMES TET-ON human ES cells
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This study compares cardiac induction time-courses using (i) wild-type hESCs subjected to a standard directed differentiation protocol, (ii) EOMES knockout hESCs subjected to the same protocol, and (iii) EOMES KO / TET-ON hESCs subjected to a TET-ON protocol.

Publication Title

Cardiogenic programming of human pluripotent stem cells by dose-controlled activation of EOMES.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE79914
Rapid and efficient generation of myelinating oligodendrocytes from human induced pluripotent stem cells using a combination of three transcription factors
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20), Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE79912
Rapid and efficient generation of myelinating oligodendrocytes from human induced pluripotent stem cells using a combination of three transcription factors [hiPSC]
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st), Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

We demonstrate that the induction of three transcription factors (SOX10, OLIG2, NKX6.2) in hiPSC-derived neural progenitor cells (hiPSC-NPC) is sufficient to rapidly generate O4+ oligodendrocytes with an efficiency of 60 to 70% within 28 days.

Publication Title

Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE62505
Characterization of perivascular MSC from the adult human brain
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Brain perivascular cells have been recently identified as new mesodermal cell type of the human brain.

Publication Title

Perivascular Mesenchymal Stem Cells From the Adult Human Brain Harbor No Instrinsic Neuroectodermal but High Mesodermal Differentiation Potential.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE20031
Generation of Autologous Pluripotent Stem Cells from Adult Testis Biopsy
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

In regenerative medicine, histocompatibility of pluripotent stem cells is required to solve the problem of immunorejection after therapeutic transplantation. In this study, we show that autologous germline stem cells (GSCs), often called spermatogonial stem cells, could be derived by testis biopsy from individual mice and that GSCs subsequently could be dedifferentiated into autologous germline-derived pluripotent stem (gPS) cells.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE73722
Comparative transcriptome analysis in induced neural stem cells reveals defined neural cell identities in vitro and after transplantation into the adult rodent brain
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Reprogramming technology enables the production of large quantities of neural progenitor cells (NPCs) from somatic cells by direct transdifferentiation.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17984
Epiblast stem cell subpopulations represent mouse embryos of distinct pregastrulation stages
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Embryonic stem cells (ESCs) comprise at least two populations of cells with divergent states of pluripotency. Here, we show that epiblast stem cells (EpiSCs) also comprise two distinct cell populations that can be distinguished by the expression of a specific Oct4-GFP marker. These two subpopulations, Oct4-GFP positive and negative EpiSCs, are capable of converting into each other in vitro. Oct4-GFP positive and negative EpiSCs are distinct from ESCs with respect to global gene expression pattern, epigenetic profile, and Oct4 enhancer utilization. Oct4-GFP negative cells share features with cells of the late mouse epiblast and cannot form chimeras. However, Oct4-GFP positive EpiSCs, which only represent a minor EpiSC fraction, resemble cells of the early epiblast and can readily contribute to chimeras. Our findings suggest that the rare ability of EpiSCs to contribute to chimeras is due to the presence of the minor EpiSC fraction representing the early epiblast.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE15561
Generation of parthenogenetic iPS cells from parthenogenetic neural stem cell
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

In pluripotential reprogramming, a pluripotent state is established within somatic cells. In this study, we have generated induced pluripotent stem (iPS) cells from bi-maternal (uniparental) parthenogenetic neural stem cells (pNSCs) by transduction with four (Oct4, Klf4, Sox2, and c-Myc) or two (Oct4 and Klf4) transcription factors. The parthenogenetic iPS (piPS) cells directly reprogrammed from pNSCs were able to generate germline-competent himeras, and hierarchical clustering analysis showed that piPS cells were clustered more closer to parthenogenetic ES cells than normal female ES cells. Interestingly, piPS cells showed loss of parthenogenetic-specific imprinting patterns of donor cells. Microarray data also showed that the maternally imprinted genes, which were not expressed in pNSCs, were upregulated in piPS cells, indicating that pluripotential reprogramming lead to induce loss of imprinting as well as re-establishment of various features of pluripotent cells in parthenogenetic somatic cells.

Publication Title

Generation of parthenogenetic induced pluripotent stem cells from parthenogenetic neural stem cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE81908
Converting Oct6 into a pluripotency inducer by interrogating Oct4 residues
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

In this study, we set out to identify those molecular features of the POU transcription factor Oct4 that are responsible for inducing pluripotency in somatic cells. Oct4 is known to have a strong preference to cooperate with Sox2 on heterodimeric SoxOct elements predominantly found in enhancers of genes expressed in embryonic stem cells (ESCs). To test whether this partnership is specific to Oct4, we compared its DNA recognition and reprogramming activities to the paralogous transcription factor Oct6, which cannot induce and maintain pluripotency in mouse cells. By analyzing ChIP-Seq data and performing quantitative dimerization assays, we found that in somatic cells, instead of heterodimerzing with Sox-factors, Oct6 more potently homodimerizes on OctOct elements. We identified that a single amino acid is crucial in directing binding to the respective composite DNA element. As a consequence, just changing this one amino acid hampers Oct4 in generating induced pluripotent stem cells (iPSCs). In contrast, the reverse mutation in Oct6 did not augment its reprogramming activity. This was achieved with at least two additional exchanges. In summary, we demonstrate that cell-type specific POU factor function is determined by a limited set of residues that affect DNA and partner factor interactions. Such relatively minor changes lead to a pronounced impact on regulatory function and reprogramming activity.

Publication Title

Changing POU dimerization preferences converts Oct6 into a pluripotency inducer.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact