Expression of key transcription factors Klf4, Oct3/4, Sox2, and c-Myc (KOSM) in embryonic stem cells can reprogram somatic cells into pluripotent cells. We found that two histone variants, TH2A and TH2B, and histone chaperone Npm enhance the KOSM-dependent generation of induced pluripotent cells (iPSCs) and produce iPSCs only with Klf4 and Oct3/4. To identify directly affected genes by these histone variants during reprogramming, we carried out gene expression profiling of MEFs overexpressing TH2A/TH2B/Npm and TH2A/TH2B deficient MEFs after infection with retroviruses expressing KOSM.
Histone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cells.
Specimen part
View SamplesSpade/Spade mutant develop the spontaneous progressive atopic dermatitis like skin inflammation at around 8-10 weeks after birth. In order to detect the pre-symptomatic events that occur in their ear tissue, we have sampled RNA from the whole ear tissue and identified the differentially expressed genes with twofolds difference in comparison with littermate wildtype ear tissue RNA samples.
No associated publication
Age, Specimen part
View SamplesTransgenic mice with prostaglandin E2 pathway in stomach develops gastric tumors. Simultaneous activation of both Wnt pathway and prostaglandin E2 pathway causes gastric adenocarcinoma. Combination of prostaglandin E2 pathway activation and suppression of BMP pathway leads to the development of gastric hamartomas.
No associated publication
Sex, Specimen part
View SamplesTo examine whether energy starvation caused by the increase in rRNA transcription affects liver metabolism, we compared the gene expression profiles of WT and NML-KO livers using Affymetrix microarray technology.
Hepatic rRNA transcription regulates high-fat-diet-induced obesity.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
No associated publication
Specimen part, Cell line, Race
View SamplesWe performed tiling array experiments to examine whole genome expression in human tissues. We investigated tissue specificity and association between evolutionary sequence conservation and transcription.
No associated publication
Specimen part, Cell line, Race
View SamplesThe adult mammalian brain is composed of distinct regions that have specialized roles. The BF/POA regions are thought to have an important role in the regulation of sleep/wake behavior. However, genetic markers of the responsible cells for the regulation of sleep/wake behavior are largely unknown. To identify the molecular markers of the BF/POA regions, we sampled the BF/POA regions and compared gene expression in the BF/POA regions with those of other brain regions which we previously reported in the BrainStars (B*) project, in which we sampled ~50 small brain regions, including sensory centers and centers for motion, time, memory, fear, and feeding.
No associated publication
Sex, Specimen part
View SamplesThe adult mammalian brain is composed of distinct regions that have specialized roles. To dissect molecularly this complex structure, we conducted a project, named the BrainStars (B*) project, in which we sampled ~50 small brain regions, including sensory centers and centers for motion, time, memory, fear, and feeding. To avoid confusion from temporal differences in gene expression, we sampled each region every 4 hours for 24 hours, and pooled the sample sets for DNA-microarray assays. Therefore, we focused only on spatial differences in gene expression. We then used informatics to identify candidates for (1) genes with high or low expression in specific regions, (2) switch-like genes with bimodal or multimodal expression patterns, and (3) genes with a uni-modal expression pattern that exhibit stable or variable levels of expression across brain regions. We used our findings to develop an integrated database (http://brainstars.org/) for exploring genome-wide expression in the adult mouse brain.
No associated publication
Sex, Specimen part
View SamplesAccumulating evidence suggests that mitochondrial dysfunction underlies the pathophysiology of bipolar disorder (BD) and schizophrenia (SZ). We performed large-scale DNA microarray analysis of postmortem brains of patients with BD or SZ, and examined expression patterns of mitochondria-related genes. We found a global down-regulation of mitochondrial genes, such as those encoding respiratory chain components, in BD and SZ samples, even after the effect of sample pH was controlled. However, this was likely due to the effects of medication. Medication-free patients with BD showed tendency of up-regulation of subset of mitochondrial genes. Our findings support the mitochondrial dysfunction hypothesis of BD and SZ pathologies. However, it may be the expression changes of a small fraction of mitochondrial genes rather than the global down-regulation of mitochondrial genes. Our findings warrant further study of the molecular mechanisms underlying mitochondrial dysfunction in BD and SZ.
Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis.
No sample metadata fields
View SamplesCellular diversity of the brain is largely attributed to the spatial and temporal heterogeneity of progenitor cells. In mammalian cerebral development, it has been difficult to determine how neural progenitor cells are heterogeneous, due to their dynamic changes in nuclear position and gene expression. To address this issue, we systematically analyzed the cDNA profiles of a large number of single progenitor cells at the mid-embryonic stage.
Single-cell gene profiling defines differential progenitor subclasses in mammalian neurogenesis.
Specimen part
View Samples