The CREB family of transcription factors stimulates cellular gene expression following phosphorylation at a conserved serine (Ser133 in CREB1) in response to cAMP and other extracellular signals. In order to characterize CREB target genes in various tissues, we give a cAMP agonist, forskolin (FSK), to cell lines or primary cultures and monitor the gene expression. To eliminate CREB-independent effects of FSK on cellular gene expression, we employed a dominant negative form of CREB called A-CREB, which dimerizes selectively with and blocks the DNA binding activity of CREB but not other bZIP family members. Therefore, genes that are induced by cAMP and the induction was blocked by A-CREB treatment likely represents CREB target genes.
Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
AMPK and PPARdelta agonists are exercise mimetics.
No sample metadata fields
View SamplesBRCA1 nestin CRE conditional knockout cortrices of P7 animals were compared to wildtype littermates to characterize the mutant phenotype.
BRCA1 tumour suppression occurs via heterochromatin-mediated silencing.
No sample metadata fields
View SamplesGenetic mutations on leucine-rich repeat kinase 2 (LRRK2) have been associated with an increased risk of Parkinson's disease. The Gly2019Ser (G2019S) mutation on LRRK2 gene is a relatively common cause of familial Parkinson's disease in Caucasian population. In this study, we generated human induced pluripotent stem cell (iPSC) lines from LRRK2 (G2019S) bearing patient fibroblasts by cell reprogramming.
Progressive degeneration of human neural stem cells caused by pathogenic LRRK2.
No sample metadata fields
View SamplesExercise activates serine/threonine kinase AMPK and transcriptional factor PPARdelta that re-model metabolism and endurance capacity of skeletal muscle. Whether and how synthetic activation of these molecules regulated muscle gene signature is unknown.
AMPK and PPARdelta agonists are exercise mimetics.
No sample metadata fields
View SamplesExercise training increases endurance by inducing global gene expression changes in skeletal muscles. The extent to which the genetic effects of exercise can be mimicked by synthetic drugs is unknown.
AMPK and PPARdelta agonists are exercise mimetics.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Dependence of hippocampal function on ERRγ-regulated mitochondrial metabolism.
Specimen part
View SamplesGenetic mutations on leucine-rich repeat kinase 2 (LRRK2) have been associated with an increased risk of Parkinson's disease. The Gly2019Ser (G2019S) mutation on LRRK2 gene is a relatively common cause of familial Parkinson's disease in Caucasian population.
Progressive degeneration of human neural stem cells caused by pathogenic LRRK2.
No sample metadata fields
View SamplesNeurons utilize glucose to generate adenosine triphosphate (ATP) essential for their survival, excitability and synaptic signaling, as well as initiating changes in neuronal structure and function. Defects in oxidative metabolism and mitochondria functions are also associated with aging and diverse human neurological diseases1-4. While neurons are known to adapt their metabolism to meet the increased energy demands of complex behaviors such as learning and memory, the molecular underpinnings regulating this process remain poorly understood4-6. Here we show that the orphan nuclear receptor estrogen related receptor gamma (ERR) becomes highly expressed during retinoic-acid induced neurogenesis and is widely expressed in neuronal nuclei throughout the brain. Mechanistically, we show that ERR directly orchestrates the expression of networks of genes involved in mitochondrial oxidative phosphorylation and energy generation in neurons. The importance of this regulation is evidenced by decreased adaptive metabolic capacity in cultured neurons lacking ERR, and reduced long-term potentiation (LTP) in ERR-/- hippocampal slices. Notably, the defect in LTP was rescued by the metabolic intermediate pyruvate, functionally linking the ERR knockout metabolic phenotype and memory formation. Consistent with this notion, mice lacking neuronal ERR exhibit defects in spatial learning and memory. These findings implicate ERR in the metabolic adaptations required for long-term memory formation.
Dependence of hippocampal function on ERRγ-regulated mitochondrial metabolism.
Specimen part
View SamplesWe show that the orphan nuclear receptor ERRg is expressed at high levels in type I muscle and when transgenically expressed in anaerobic type II muscles (ERRGO mice) or cultured cells, powerfully regulates VEGF expression, angiogenesis and vascular supply in absence of exercise. ERRGO mice show increased expression of genes promoting fat metabolism, mitochondrial respiration and type I fiber specification. In parallel, the type II muscle in ERRGO mice display an activated angiogenic program marked by myofibrillar induction and secretion of pro-angiogenic factors, frank neo-vascularization and a 100% increase in running endurance. Surprisingly, the induction of VEGF and type I muscle properties by ERRg does not involve the transcriptional co-activator PGC1a. Instead, ERRg genetically activates the energy sensor AMPK which is typically inactive in absence of exercise. Therefore, ERRg and AMPK, known regulators of mitochondrial function and metabolism, together control a novel angiogenic pathway that anatomically synchronizes vascular arborization to oxidative metabolism revealing an exercise-independent mechanism for matching supply and demand.
No associated publication
Sex
View Samples