The MYB oncogene is widely expressed in acute leukemias and is important for the continued proliferation of leukemia cells, raising the possibility that MYB may be a therapeutic target. However realization of this potential requires (i) a significant therapeutic window for MYB inhibition, given its essential role in normal hematopoiesis; and (ii) an approach for developing an effective therapeutic. We previously showed that the interaction of Myb with the coactivator CBP/p300 is essential for its transforming activity. Here we use hematopoietic cells from the Booreana mouse strain, which carries a mutation in Myb that prevents interaction with CBP/p300, to examine the requirement for this interaction in myeloid transformation and leukemogenesis. Using this strain and a strain (plt6) carrying a complementary mutation in p300, we show that the Myb-p300 interaction is essential for in vitro transformation by the myeloid leukemia oncogenes AML1-ETO, AML1-ETO9a, MLL-ENL, and MLL-AF9. We further show that unlike cells from wild-type (WT) mice, Booreana cells fail to induce leukemia upon transplantation into irradiated recipients following transduction with an AML1-ETO9a retrovirus. These data highlight disruption of the Myb-p300 interaction as a potential therapeutic strategy for AML and suggest that such a strategy would have a useable therapeutic index since Booreana mice, unlike Myb null mice, are viable. Finally we have begun to explore the molecular basis of the these observations by gene expression profiling; this highlighted several genes previously implicated in myeloid leukemogenesis as being differentially expressed between WT and Booreana cells transduced with AML1-ETO9a.
Interaction of c-Myb with p300 is required for the induction of acute myeloid leukemia (AML) by human AML oncogenes.
Specimen part
View Samples