refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 46 results
Sort by

Filters

Technology

Platform

accession-icon GSE28510
Expression data from Xenopus laevis liver
  • organism-icon Xenopus laevis
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Xenopus laevis Genome 2.0 Array (xlaevis2)

Description

Pregnane X receptor (PXR) is generally considered the most important sensor of natural and anthropogenic xenobiotics in vertebrates. In Xenopus, however, PXR plays a role in neural development and it is irresponsive to xenobiotics. We report a first broad-spectrum amphibian xenobiotic receptor, which is an ortholog of the mammalian constitutive androstane receptor (CAR). The low basal activity and pronounced responsiveness to activators such as drugs and steroids displayed by the Xenopus CAR resemble PXR, which both trace back to a common ancestor early in the divergence of land vertebrates. The constitutive activity of CAR emerged first in Sauropsida (reptiles and birds) and it is common to all fully terrestrial land vertebrates (Amniota). This activity can be mimicked by humanizing just two amino acids of the Xenopus CAR. These results demonstrate a remarkable plasticity of CAR which enabled its employment as Xenopus xenosensors. They open way to toxicogenomic and bioaugmentation studies in amphibians, a critically endangered taxon of land vertebrates. Taken together, we provide evidence for a much earlier origin of CAR, for its conservation in tetrapods which exceeds that of PXR, and for its remarkable functional plasticity which enabled its role as a PXR-like xenosensor in Amphibia.

Publication Title

Evolutionary history and functional characterization of the amphibian xenosensor CAR.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE14886
Expression data in HTETOP cells following tetracycline or dexrazoxane treatment
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

HTETOP cells, derived from the human fibrosarcoma cell line HT1080, express human topoisomearse II (TOP2A) exclusively from a tetracycline (TET)-regulated transgene, we used HTETOP cells to differentiate between TOP2A-dependent and independent apoptotic effects of doxorubicin and dexrazoxane.

Publication Title

Topoisomerase II{alpha}-dependent and -independent apoptotic effects of dexrazoxane and doxorubicin.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE71078
Comparative expression analysis of BRCA1mosMe fibroblast vs. BRCA1wt fibroblasts
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

We performed a comprehensive molecular and cellular analysis of primary dermal fibroblasts taken from a patient with recurrent cancers, harboring a BRCA1 mosaic epimutation (BRCA1mosMe) in comparison to their isogenic control fibroblasts (BRCA1wt), taken from the patients healthy monozygous sister.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE19303
Changes of myocardial gene expression and protein composition in patients with dilated cardiomyopathy after immunoadsorption with subsequent immunoglobulin substitution
  • organism-icon Homo sapiens
  • sample-icon 79 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Immunoadsorption with subsequent immunoglobulin substitution (IA/IgG) represents a therapeutic approach for patients with dilated cardiomyopathy (DCM). Here, we studied which molecular cardiac alterations are initiated after this treatment.

Publication Title

Changes of myocardial gene expression and protein composition in patients with dilated cardiomyopathy after immunoadsorption with subsequent immunoglobulin substitution.

Sample Metadata Fields

Sex, Age, Disease

View Samples
accession-icon GSE21254
Classical Hodgkin lymphoma shows epigenetic features of an abortive plasma cellular differentiation
  • organism-icon Homo sapiens
  • sample-icon 41 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Classical Hodgkin's lymphoma shows epigenetic features of abortive plasma cell differentiation.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE17800
Myocardial gene expression profiles and cardiodepressant autoantibodies predict response of patients with dilated cardiomyopathy to immunoadsorption therapy
  • organism-icon Homo sapiens
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background: Immunoadsorption with subsequent IgG substitution (IA/IgG) represents a novel therapeutic approach in treatment of dilated cardiomyopathy (DCM) which leads to improvement of left ventricular ejection fraction (LVEF). However, response to this therapeutic intervention shows wide inter-individual variability. In this pilot study, we tested the value of clinical, biochemical and molecular parameters for prediction of the response of patients with DCM to IA/IgG.

Publication Title

Myocardial gene expression profiles and cardiodepressant autoantibodies predict response of patients with dilated cardiomyopathy to immunoadsorption therapy.

Sample Metadata Fields

Sex, Age, Disease

View Samples
accession-icon GSE8388
Epigenetic upregulation of B-cell inappropriate genes induces extinction of B-cell program in classical Hodgkin lymphoma
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

A unique feature of the tumour cells (Hodgkin/Reed-Sternberg (HRS)) of classical Hodgkin lymphoma (cHL) is the loss of their B-cell phenotype despite their B-cell origin. Several lines of evidence suggest that epigenomic events, especially promoter DNA-methylation, are involved in this silencing of many B-cell associated genes. Here we show that DNA-demethylation alone or in conjunction with histone-acetylation is not able to reconstitute the B-cell gene expression program in cultured HRS cells. Instead, combined DNA-demethylation and histone-acetylation of B cells induce a nearly complete extinction of their B-cell expression program and a tremendous up-regulation of numerous cHL characteristic genes including key players such as Id2 known to be involved in the suppression of the B-cell phenotype. Since the up-regulation of cHL characteristic genes and the extinction of the B-cell expression program occurred simultaneously, epigenetic changes may also be responsible for the malignant transformation of cHL. The epigenetic up-regulation of cHL characteristic genes thus play - in addition to promoter DNA-hypermethylation of B-cell associated genes a pivotal role for the reprogramming of HRS cells and explain why DNA-demethylation alone is unable to reconstitute the B-cell expression program in HRS cells.

Publication Title

Histone acetylation and DNA demethylation of B cells result in a Hodgkin-like phenotype.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE21252
Classical Hodgkin lymphoma shows epigenetic features of an abortive plasma cellular differentiation: expression of A/T-treated vs. untreated B-cell lines
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Background

Publication Title

Classical Hodgkin's lymphoma shows epigenetic features of abortive plasma cell differentiation.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE30726
Deep sequencing of MYC DNA-binding sites in Burkitt's lymphoma
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Background: MYC is a transcription factor encoded by the c-MYC gene (thereafter termed MYC). MYC is key transcription factor involved in many central cellular processes including ribosomal biogenesis. MYC is overexpressed in the majority of human tumours including aggressive B-cell lymphoma especially Burkitt's lymphoma. Although Burkitt's lymphoma is a highlight example for MYC overexpression due to a chromosomal translocation, no global analysis of MYC binding sites by chromatin immunoprecipitation (ChIP) followed by global next generation sequencing (ChIP-Seq) has been conducted so far in Burkitt's lymphoma.

Publication Title

Deep sequencing of MYC DNA-binding sites in Burkitt lymphoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE10949
Kidney-specific Dysfunction of the Organic Anion Transporter MRP2 (ABCC2): Functional Consequences for Renal Grafts
  • organism-icon Rattus norvegicus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Transplanting renal allografts represents the major curative treatment of chronic renal failure. Despite recent advances in immunosuppressive therapy, long-term survival of allografts remains a major clinical problem. Kidney function depends in part on transport proteins such as MRP2 (ABCC2) which facilitates renal secretion of amphiphilic exogenous and endogenous compounds. Inherited variants of genes not related to the immune system have been shown to modify the outcome after renal transplantation. We investigated whether ABCC2 gene variants in the donor kidney affect renal graft function.

Publication Title

Multidrug resistance-related protein 2 genotype of the donor affects kidney graft function.

Sample Metadata Fields

Sex

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact