refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 12385 results
Sort by

Filters

Technology

Platform

accession-icon GSE71010
Complexity and Specificity of the Neutrophil Transcriptome in Diverse Inflammatory States
  • organism-icon Homo sapiens
  • sample-icon 93 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

In this study, we explored transcriptional complexity in human neutrophils, cells generally regarded as nonspecific in their functions and responses. We studied distinct human disease phenotypes and found that, at the gene, gene isoform, and miRNA level, neutrophils exhibit considerable specificity in their transcriptomes. These findings were particularly striking for isoform usage. Thus, even cells whose responses are considered non-specific show tailoring of their transcriptional repertoire toward specific physiologic or pathologic contexts. These findings have important implications for our understanding of the link between gene expression and disease phenotypes.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE94354
Modeling Transcriptional Rewiring in Neutrophils through the Course of Treated Juvenile Idiopathic Arthritis
  • organism-icon Homo sapiens
  • sample-icon 68 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

Neutrophils in children with the polyarticular form of juvenile idiopathic arthritis (JIA) display abnormal transcriptional patterns linked to fundamental metabolic derangements. These abnormalities include re-ordering of miRNA-RNA expression networks. In this study, we sought to determine the effects of therapy on miRNA-RNA networks in polyarticular JIA. We studied children with active JIA disease on therapy (ADM), children with inactive disease also on therapy (ID), and children with clinical remission on medication (CRM) using exon and miRNA microarrays and compared results to findings from healthy control (HC) children. We found substantial re-ordering of miRNA-RNA networks after the initiation of therapy. Each disease state was associated with a distinct transcriptional profile.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE67596
Common Immunologic Pathways Between Oligoarticular and Polyarticular Juvenile Idiopathic Arthritis
  • organism-icon Homo sapiens
  • sample-icon 71 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The polyarticular and oligoarticular forms of juvenile idiopathic arthritis are classified as distinct entities. At the same time, many children who present with an oligoarticular phenotype eventually evolve to a polyarticular disease pattern, suggesting that the phenotypes might share with overlapping molecular mechanisms. Using gene expression microarrays, we found that 14 genes in neutrophils and 55 genes in PBMC shows common patterns of differential expression when children with active oligoarticular and polyarticular JIA were compared with healthy controls. These results demonstrate that there are commonalities between oligoarticular and polyarticular JIA that suggest overlapping immune mechanisms.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE36634
Fate determination of adult human glial progenitor cells
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Glial progenitor cells comprise the most abundant population of progenitor cells in the adult human brain. They are responsible for CNS remyelination, and likely contribute to the astrogliotic response to brain injury and degeneration as well. Adult human GPCs are biased to differentiate as oligodendrocytes and elaborate new myelin, and yet they retain multilineage plasticity, and can give rise to neurons as well as astrocytes and oligodendrocytes once removed from the adult parenchymal environment. GPCs retain strong mechanisms for cell-autonomous self-renewal, and yet both their phenotype and fate may be dictated by their microenvironment. Using the transcriptional profiles of acutely isolated GPCs, we have begun to understand the operative ligand-receptor interactions involved in these processes, and have identified several key signaling pathways by which adult human GPCs may be reliably instructed to either oligodendrocytic or astrocytic fate. In addition, we have noted significant differences between the expressed genes and dominant signaling pathways of fetal and adult human GPCs, as well as between rodent and human GPCs. The latter data in particular call into question therapeutic strategies predicated solely upon data obtained using rodents, while perhaps highlighting the extent to which evolution has been attended by the phylogenetic modification of glial phenotype and function.

Publication Title

Fate determination of adult human glial progenitor cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE5789
Effect of 13 weeks of subchronic exposure to TCDD, PeCDF, PCB126, PCB153 and PCB126/PCB153 on hepatic gene expression
  • organism-icon Rattus norvegicus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome U34 Array (rgu34a)

Description

This study investigates the effects of the aryl hydrocarbon receptor (AhR) ligands TCDD, PCB126 and PeCDF; the non-AhR ligand PCB153 and the binary mixture PCB126/PCB153 on hepatic gene expression in female sprague dawley rats. Rats were treated with toxicological equivalent doses of TCDD (100ng/kg), PeCDF (200ng/kg), PCB126 (1000ng/kg) and PCB153 (1000ug/kg) 5 days a week for 13 weeks.

Publication Title

Hepatic gene downregulation following acute and subchronic exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE22263
Effect of 52 weeks of chronic exposure to TCDD AND PCB126 on hepatic gene expression
  • organism-icon Rattus norvegicus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome U34 Array (rgu34a)

Description

This study investigates the effects of the aryl hydrocarbon receptor (AhR) ligands TCDD and PCB126 on hepatic gene expression in female sprague dawley rats. Rats were treated with toxicological equivalent doses of TCDD (100ng/kg/day) (Toxic equivalence factor (TEF) = 1.0), PCB126 (30ng, 300ng or 1000ng/kg/day) (TEF = 0.1) or a vehicle control of corn oil:acetone (99:1) 5 days a week for 52 weeks.

Publication Title

Toxicogenomic analysis of exposure to TCDD, PCB126 and PCB153: identification of genomic biomarkers of exposure to AhR ligands.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE90880
Expression data from blood of healthy controls and ns vitiligo patients
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

Vitiligo Blood Transcriptomics Provides New Insights into Disease Mechanisms and Identifies Potential Novel Therapeutic Targets Abstract Background: Significant gaps remain regarding the pathomechanisms underlying the autoimmune response in vitiligo (VL), where the loss of self-tolerance leads to the targeted killing of melanocytes. Specifically, there is incomplete information regarding alterations in the systemic environment that are relevant to the disease state. Methods: We undertook a genome-wide profiling approach to examine gene expression in the peripheral blood of VL patients and healthy controls in the context of our previously published VL-skin gene expression profile. We used several in silico bioinformatics-based analyses to provide new insights into disease mechanisms and suggest novel targets for future therapy. Results: Unsupervised clustering methods of the VL-blood dataset demonstrate a disease-state-specific set of co-expressed genes. Ontology enrichment analysis of 99 differentially expressed genes (DEGs) uncovers a down-regulated immune/inflammatory response, B-Cell antigen receptor (BCR) pathways, apoptosis and catabolic processes in VL-blood. There is evidence for both type I and II interferon (IFN) playing a role in VL pathogenesis. We used interactome analysis to identify several key blood associated transcriptional factors (TFs) from within (STAT1, STAT6 and NF-kB), as well as hidden (CREB1, MYC, IRF4, IRF1, and TP53) from the dataset that potentially affect disease pathogenesis. The TFs overlap with our reported lesional-skin transcriptional circuitry, underscoring their potential importance to the disease. We also identify a shared VL-blood and -skin transcriptional hot spot that maps to chromosome 6, and includes three VL-blood dysregulated genes (PSMB8, PSMB9 and TAP1) described as potential VL-associated genetic susceptibility loci. Finally, we provide bioinformatics-based support for prioritizing dysregulated genes in VL-blood or skin as potential therapeutic targets. Conclusions: We examined the VL-blood transcriptome in context with our (previously published) VL-skin transcriptional profile to address a major gap in knowledge regarding the systemic changes underlying skin-specific manifestation of vitiligo. Several transcriptional hot spots observed in both environments offer prioritized targets for identifying disease risk genes. Finally, within the transcriptional framework of VL, we identify five novel molecules (STAT1, PRKCD, PTPN6, MYC and FGFR2) that lend themselves to being targeted by drugs for future potential VL-therapy.

Publication Title

Vitiligo blood transcriptomics provides new insights into disease mechanisms and identifies potential novel therapeutic targets.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE7267
Belgrade +/b and b/b Duodenum and Jejunum
  • organism-icon Rattus norvegicus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Three groups of male +b and bb rats were obtained (ages between 6 and 14 months) and intestinal scrapes were taken. Tissues was combined from 3 rats per group and processed for gene chip analysis.

Publication Title

Induction of arachidonate 12-lipoxygenase (Alox15) in intestine of iron-deficient rats correlates with the production of biologically active lipid mediators.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE37127
Positive and Negative Spatial Gradients of High Wall Shear Stress Have Different Effects on Endothelial Gene Expression
  • organism-icon Bos taurus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

Intracranial aneurysms tend to form at bifurcation apices, where flow impingement causes high frictional force (or wall shear stress, WSS) and flow acceleration and deceleration that create positive and negative streamwise gradients in WSS (WSSG), respectively. In vivo, intracranial aneurysms initiate under high WSS and positive WSSG. Little is known about the responses of endothelial cells (ECs) to either positive or negative WSSG under high WSS conditions. We used cDNA microarrays to profile EC gene expression exposed to positive WSSG vs. negative WSSG for 24 hours in a flow chamber with converging and diverging channels, respectively. WSS varied between 3.5 and 28.4 Pa in each gradient channel. GO and biological pathway analysis indicated that positive WSSG favored proliferation, apoptosis, and extracellular matrix processing while decreasing expression of pro-inflammatory genes. A subset of characteristic genes was validated using qPCR: Genes for ADAMTS1, CKAP2 and NCEH1 had higher expression under positive WSSG compared to negative WSSG while TAGLN, THBS1, VCAM1, CCL2, and CSF2 had lower expression. To determine if these patterns of expression are also exhibited in vivo, we tested whether the extracellular matrix related protein ADAMTS1 and proliferation were modulated by positive WSSG during intracranial aneurysm initiation. An aneurysm was induced at the basiliar terminus in rabbits by bilateral carotid ligation. WSSG at the bifurcation was determined by computational fluid dynamic simulations from 3D angiography and mapped on immunofluorescence staining for ADAMTS1 and the proliferation marker, Ki-67. Endothelial ADAMTS1 protein and Ki-67 were significantly higher in regions with positive WSSG compared to adjacent sites where WSSG was negative. Our results indicate that WSSG can elicit distinct gene expression profiles in ECs. Increased matrix processing and high levels of proliferation under positive WSSG could contribute to intracranial aneurysm initiation by causing transient gaps in the endothelium or disrupting EC signals to smooth muscle cells.

Publication Title

Differential gene expression by endothelial cells under positive and negative streamwise gradients of high wall shear stress.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE29368
CD140a+ human oligodendrocyte progenitor cells
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Glial progenitor cells (GPCs) pervade the human brain. These cells express gangliosides recognized by MAb A2B5, and some but not all can generate oligodendrocytes. Since some A2B5+ GPCs express PDGFa receptor (PDGFRa), which is critical to oligodendrocyte development, we asked if PDGFRa-directed sorting might isolate oligodendrocyte-competent progenitors. We used FACS to sort PDGFRa+ cells from the second trimester fetal human forebrain, based on expression of the PDGFRa epitope CD140a. CD140a+ cells could be maintained as mitotic progenitors that could be instructed to either oligodendrocyte or astrocyte phenotype. Transplanted CD140a+ cells robustly myelinated the hypomyelinated shiverer mouse brain. Microarray confirmed that CD140a+ cells differentially expressed PDGFRA, NG2, OLIG1/2, NKX2.2 and SOX2. Some expressed CD9, thereby defining a CD140a+/CD9+ fraction of oligodendrocyte-biased progenitors. CD140a+ cells differentially expressed genes of the PTN-PTPRZ1, wnt, notch and BMP pathways, suggesting the interaction of self-renewal and fate-restricting pathways in these cells, while identifying targets for their mobilization and instruction.

Publication Title

CD140a identifies a population of highly myelinogenic, migration-competent and efficiently engrafting human oligodendrocyte progenitor cells.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact