refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 14981 results
Sort by

Filters

Technology

Platform

accession-icon GSE80273
The aryl hydrocarbon receptor in keratinocytes is essential for murine skin barrier integrity
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor involved in adaptive cell functions, and highly active in the epidermis. AhR-ligands can accelerate keratinocyte differentiation, but a precise role for AhR in the skin barrier is unknown. We here show that transepidermal water loss (TEWL), a parameter of skin barrier integrity, is high in AhR-deficient (AhR-KO) mice. Experiments with conditionally AhR-deficient mouse lines identified keratinocytes as the major responsible cell population for high TEWL. Electron microscopy showed weaker inter-cellular connectivity in the epidermis of keratinocytes in AhR-KO mice, and gene expression analysis identified many barrier-associated genes as AhR targets. Moreover, AhR-deficient mice had higher inter-individual differences in their microbiome. Interestingly, removing AhR-ligands from the diet of wild-type mice mimicked AhR-deficiency regarding the impaired barrier. Vice versa, re-addition of the plant-derived ligand indole-3-carbinol (I3C) rescued the barrier deficiency even in aged mice. Our results suggest that functional AhR expression is critical for skin barrier integrity and that AhR represents a molecular target for the development of novel therapeutic approaches for skin barrier diseases, including dietary intervention.

Publication Title

Aryl Hydrocarbon Receptor in Keratinocytes Is Essential for Murine Skin Barrier Integrity.

Sample Metadata Fields

Sex, Specimen part, Treatment, Time

View Samples
accession-icon GSE70410
Deletion of hyaluronan synthase 3 inhibits neointimal hyperplasia
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Affymetrix Mouse Gene 2.0 ST Gene Expression Microarrays were used to analyze differentially expressed genes after carotid artery ligation. The aim of this experiment was to detect genes regulated in Has3 deficient as compared to wildtype controls that might be involved in neointimal hyperplasia.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE63259
Comparison of gene expression in aorta and CD115+ isolated circulating cells from apoE-/- versus apoE-/-LTbR-/- mice
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Affymetrix Microarrays were used to analyse gene expression in aortas and circulating CD115+ cells of ApoE- and ApoE/Lymphotoxin beta receptor (LTbR)-double-deficent mice fed a Western diet from 8 to 12 weeks of age in order to identify regulated genes and pathways leading to reduced atherosclerosis in ApoE-/-/LTbR-/- mice compared to ApoE-/- littermate controls.

Publication Title

Deficiency in lymphotoxin β receptor protects from atherosclerosis in apoE-deficient mice.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE57421
Murine CD8 T cell gene expression in reponse to type I interferon
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

To investigate type I interferon regulated genes in CD8+ T cells, we used microarray analyses after stimulation of primary murine T cell cultures. Negatively sorted T cells from naive C57Bl/6 mice were incubated with PBS or anti-CD3 in presence or absence of type I interferon (IFN-4a, 500U/mL). After 6h total RNA was extracted from the primary T cell cultures and microarrays were performed after RNA quality control. Among significantly regulated genes, we identified NK cell receptor ligands to be affected by exposure to type I interferon.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE53213
Expression data from glioma cells exposed to interferon (IFN)-beta
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Glioma cells are sensitized to the alkylator temozolomide after exposure to IFN-beta. In glioma-initiating cells (GIC), IFN-beta alone reduces clonogenicity. We investigated differentially expressed genes with or without IFN exposure in either longterm glioma cells or GIC.

Publication Title

Interferon-β induces loss of spherogenicity and overcomes therapy resistance of glioblastoma stem cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE73587
Gene expression in brain tissue from MOG-immunized wild-type or C57BL/6Je/e mice at disease maximum.
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Neuroprotective effects of NDP-MSH. We have characterized the signaling down-stream of melanocortin-1 receptor ligation to identify pathways mediating neuroprotective effects of NDP-MSH using transcriptional profiling. In this data set we included the expression data obtained from mouse brain tissue (MOG-immunized wild-type or C57BL/6Je/e mice at disease maximum, d14 after immunization). The data were used to obtain differentially regulated genes in wild-type or C57BL/6Je/e mice upon systemic NDP-MSH treatment.

Publication Title

Melanocortin-1 receptor activation is neuroprotective in mouse models of neuroinflammatory disease.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE28200
Expression data of ITK deficient, HVS transformed CD4+ T cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We analyzed gene expression profiles of unstimulated Herpesvirus Saimiri (HVS) transformed T cells (CD4+) of patients harboring a homozygous R335W mutation in the IL-2 inducible T cell kinase (ITK) compared to healthy control HVS cells.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33627
Expression data of IL-18 generated murine NK cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We analyzed gene expression profiles of IL-18 generated murine NK cells in comparison to unstimulated, freshly isolated splenic NK cells.

Publication Title

Immunoregulatory natural killer cells suppress autoimmunity by down-regulating antigen-specific CD8+ T cells in mice.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE143527
Novel technique for the simultaneous isolation of cardiac fibroblasts and epicardial stromal cells from the infarcted murine heart
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Clariom S Array (clariomsmouse)

Description

Myocardial infarction (MI) leads to activation of cardiac fibroblasts (aCFs) and at the same time induces the formation of epicardium-derived cells at the heart surface. To discriminate between the two cell populations, we elaborated a fast and efficient protocol for the simultaneous isolation and characterization of aCFs and epicardial stromal cells (EpiSCs) from the infarcted mouse heart. For the isolation of aCFs and EpiSCs, infarcted hearts (50 min ischaemia/reperfusion) were digested by perfusion with a collagenase-containing medium for only 8 min, while EpiSCs were enzymatically removed from the outside by applying mild shear forces via a motor driven device.

Publication Title

Novel technique for the simultaneous isolation of cardiac fibroblasts and epicardial stromal cells from the infarcted murine heart.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12211
Gene expression of CML CD34+ cells during Imatinib therapy
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Imatinib has become the current standard therapy for patients with chronic myelogenous leukaemia (CML). For a better understanding of the Imatinib-related molecular effects in vivo, we assessed gene expression profiles of Philadelphia Chromosome positive (Ph+) CD34+ cells from peripheral blood of 6 patients with de novo CML in chronic phase. After 7 days of treatment with Imatinib the Ph+ CD34+ cells were reassessed to look for changes in the transcriptome. The expression level of 303 genes was significantly different comparing the transcriptome of the Ph+ CD34+ cells before and after 7 days of Imatinib therapy (183 down-regulated, 120 up-regulated, lower bound 1.2-fold). For a substantial number of genes governing cell cycle and DNA replication, the level of expression significantly decreased (CDC2, RRM2, PCNA, MCM4). On the other hand, therapy with Imatinib was associated with an increase of genes related to adhesive interactions, such as L-selectin or CD44. A group of 8 genes with differential expression levels were confirmed using a gene specific quantitative real-time PCR. Thus, during the first week of treatment, Imatinib is preferentially counteracting the bcr-abl induced effects related to a disturbed cell cycle and defective adhesion of leukemic Ph+ CD34+ cells.

Publication Title

Early in vivo changes of the transcriptome in Philadelphia chromosome-positive CD34+ cells from patients with chronic myelogenous leukaemia following imatinib therapy.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact