refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 14983 results
Sort by

Filters

Technology

Platform

accession-icon GSE21376
Developmental Roles of MEC and NuRD Complexes in Caenorhabditis elegans.
  • organism-icon Caenorhabditis elegans
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Expression data from Caenorhabditis elegans let-418(RNAi), mep-1(RNAi) and gfp(RNAi) L1 larvae.

Publication Title

Different Mi-2 complexes for various developmental functions in Caenorhabditis elegans.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE32590
Regulation of gene expression in the postnatally developing monkey hippocampal formation
  • organism-icon Macaca mulatta
  • sample-icon 78 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The hippocampus is part of a brain network essential for memory function. Paradoxically, the hippocampus is also the brain structure that is most sensitive to hypoxic-ischemic episodes. Here we show that the expression of genes associated with glycolysis and glutamate metabolism in astrocytes and the coverage of excitatory synapses by astrocytic processes undergo significant decreases in the CA1 field of the monkey hippocampus during postnatal development. Given the established role of astrocytes in the regulation of glutamate concentration in the synaptic cleft, our findings indicate that a developmental decrease in astrocytic processes underlies the selective vulnerability of CA1 during hypoxic-ischemic episodes in adulthood, its decreased susceptibility to febrile seizures with age, as well as contribute to the emergence of selective, adult-like memory function.

Publication Title

Developmental regulation of gene expression and astrocytic processes may explain selective hippocampal vulnerability.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE92955
Whole transcriptome analysis of the ventrolateral hypothalamic parvafox nucleus in mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

The ventrolateral hypothalamic parvafox (formerly called PV1-Foxb1) nucleus is an anatomical entity of recent discovery and unknown function. With a view to gaining an insight into its putative functional role(s), we conducted a gene-microarray analysis.

Publication Title

Parvalbumin-Neurons of the Ventrolateral Hypothalamic Parvafox Nucleus Receive a Glycinergic Input: A Gene-Microarray Study.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP071731
Rattus norvegicus breed:Wistar Transcriptome or Gene expression
  • organism-icon Rattus norvegicus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HiSeq 2000

Description

We have studied the transcriptome after REM sleep deprivation and compared to normal control.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP072115
Rattus norvegicus strain:wistar Transcriptome or Gene expression
  • organism-icon Rattus norvegicus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HiSeq 2000

Description

Free moving control

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP072725
Rattus norvegicus strain:Wistar Transcriptome or Gene expression
  • organism-icon Rattus norvegicus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HiSeq 2000

Description

REM sleep deprived rat

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE4002
Global gene expression profile of interspecies pregnant implantation sites between rat and mouse
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

In present, interspecies cloning and interspecies-pregnancy were studied for endangered species rescue. However, the low implantation and survival ratio, spontaneous abortion, and unknown reason embryos absorption are the common and difficult problems of interspecies-pregnancy. In order to discover the mechanism of interspecies-pregnant failure and find ways to overcome the xeon-pregnant obstacles, we chosen the rat embryos pregnant in mouse uterus as a interspecies-pregnancy model. Three groups were set, mouse embryos to mouse recipients (MM) as control group, rat embryos to mouse recipients (RM), and rat and mouse embryos to mouse recipients together (RMM) as experiment groups. The former studies showed that rat embryos live no longer than day 7 of mouse pregnancy (D7). Our results showed that rat embryos survived to D7, and still existed to day 9 of mouse pregnancy (D9) in RM group. Surprisingly, the rat embryos survived to day 13 of the mouse gestation (D13) in RMM group. Microarray analysis was used to detect the global-gene expression profile changes of the whole implantation sites among the three groups at D7 and D9. By this way, we screened out the genes promoting the implanted rat embryos development in a mouse uterus which helped the rat embryos survive to D13 in RMM group compared with RM group, and the genes hindering the rat embryos development in a mouse uterus which prevented rat embryos living longer than D7 in RM group and D13 in RMM group compared with MM group. These findings provide insights into the mechanism of interspecies pregnant failure and new idea for interspecies pregnant studies.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE10479
Significant differential expression genes from HUVECs induced by bg-CAT
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In vertebrates, non-lens bg-crystallins are widely expressed in various tissues, but their functions are unknown. The molecular mechanisms of trefoil factors, initiators of mucosal healing and being greatly involved in tumorigenesis, have remained elusive.A naturally existing 72-kDa complex of non-lens bg-crystallin (a-subunit) and trefoil factor (b-subunit), named bg-CAT, was identified from frog Bombina maxima skin secretions. Its a-subunit and b-subunit (containing three trefoil factor domains), with a non-covalently linked form of ab2, show significant sequence homology to ep37 proteins, a group of non-lens bg-crystallins identified in newt Cynops pyrrhogaster and mammalian trefoil factors, respectively. The bg-CAT showed multiple cellular effects on human umbilical vein endothelial cells. Low dosages of bg-CAT (25-50 pM) were able to stimulate cell migration and wound healing. At high concentrations, it induced cell detachment (EC50 10 nM) and apoptosis. The bg-CAT was rapidly endocytosed via intracellular vacuole formation. Under confocal microscope, some of the vacuoles were translocated to nucleus and partially fused with nuclear membrane. However, what exactly target of bg-CAT act on HUVECs nuclear is still unknown. Primary cultured HUVECs treated with bg-CAT (25 nM, 2 h) were selected for RNA extraction and hybridization on Affymetrix microarrays. We sought to obtain the genome wide level of significant differential gene expression induced by bg-CAT on HUVECs in order to get clues about bg-CAT action mechanisms. These findings illustrate novel cellular functions of non-lens bg-cyrstallins and action mechanism via association with trefoil factors, serving as clues for investigating the possible occurrence of similar molecules and action mechanisms in mammals.

Publication Title

A novel non-lens betagamma-crystallin and trefoil factor complex from amphibian skin and its functional implications.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE39392
Androgenetic haploid embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Androgenetic haploid embryonic stem cells produce live transgenic mice.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE39391
Gene expression data from ahES cells, ES cells, MEF cells and round sperm
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Haploid stem cells offer an easy-to-manipulate genetic system and therefore have great values for studies of recessive phenotypes. Here, we show that mouse androgenetic haploid ES (ahES) cell lines can be established by transferring sperm into enucleated oocyte. The ahES cells maintain haploidy and stable growth over 30 passages, express pluripotent markers, possess the ability to differentiate into all three germ-layers in vitro and in vivo, and contribute to germline of chimeras when injected into blastocysts. Although epigenetically distinct from sperm cells, the ahES cells can produce viable and fertile progenies after intracytoplasmic injection into mature oocytes. The oocyte injection procedure can also produce viable transgenic mice from genetically engineered ahES cells.

Publication Title

Androgenetic haploid embryonic stem cells produce live transgenic mice.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact