Mice were fed with either normal diet (ND), 0.2% cholic acid diet (0.2%CA), DEN treated and fed ND or DEN treated and fed 0.2%CA diet. DEN was treated at 15 microgram/kg body weight at postnatal day 15. Diets were fed for two months starting 8 months of age till 10 months of age. Livers were collected at10 months of age, Total RNA was isolated and used for microarray experiments.
Bile acids promote diethylnitrosamine-induced hepatocellular carcinoma via increased inflammatory signaling.
Age, Specimen part
View SamplesThe rat pancreatic cell line AR42J is relatively undifferentiated under normal culture conditions. When the glucocorticoid dexamethasone is added to the medium the cells display a dramatic decrease in proliferative rate and are induced to a more exocrine phenotype that includes increased expression of exocrine pancreas products (digestive enzymes) and more developed regulated secretion. We used microarray to determine changes in gene expression comparing control (without dexamethasone) vs induced (plus dexamethasone).
No associated publication
Specimen part, Cell line
View SamplesTotal RNA was prepared using TRIzol reagent from the pancreata of eight week old male mice. The genotypes were Control: gastrin+/-, CFTR+/+; and CF: gastrin+/-, CFTR-/-. All mice were on 95% black6, 5% 129Sv background. Mice were fed Peptamen from age 10 days to prevent intestinal obstruction.
Acidic duodenal pH alters gene expression in the cystic fibrosis mouse pancreas.
No sample metadata fields
View SamplesTotal RNA was prepared from the entire small intestines of 40 day old Control and CFTR null mice (2 males and 1 female of each genotype), congenic on the black6 background, using TRIzol reagent. Mice were fed Peptamen from age 10 days to prevent intestinal obstruction.
No associated publication
No sample metadata fields
View SamplesBackground: Cystic fibrosis (CF) is caused by mutations in the CFTR gene that impair function of this cAMP-regulated Cl- channel. In the small intestine, loss of CFTR function creates a dehydrated, acidic luminal environment which is believed to cause an accumulation of mucus, a phenotype characteristic of CF. CF mice have an innate immune response and impaired intestinal transit as well. We investigated whether lubiprostone, which activates the CLC2 Cl- channel, would improve the CF intestinal phenotype.
Lubiprostone ameliorates the cystic fibrosis mouse intestinal phenotype.
Specimen part, Treatment
View SamplesWe utilized DCIS mouse intraductal (MIND) models with both SUM225 and DCIS.COM cell lines to characterize the sequential and temporal changes in mRNA expression over a time course of 2, 6, and 10 weeks during in vivo progression in the epithelial cells from DCIS to invasive cancer.
No associated publication
Specimen part, Time
View SamplesThe molecular mechanisms that regulate the pivotal transformation processes observed in the follicular wall following the pre-ovulatory LH-surge, are still not established, particularly for cells of the thecal layer. To elucidate thecal and granulosa cell type-specific biological functions and signaling pathways, large dominant bovine follicles were collected before and 21 hrs after an exogenous GnRH induced LH surge. Because LH receptor density varies within the granulosa cell populations, antral granulosa (aGC; those aspirated by follicular puncture) and membrane associated granulosa (mGC; those scraped from the follicular wall) were compared to thecal cell expression profiles determined by mRNA microarrays. Thecal cell gene expression was less affected in the peri-ovulatory follicle when compared to granulosa cells, as evidenced by only 2% versus 25% of the ~11,000 genes expressed changing in response to the LH surge, respectively. The majority of the 203 LH-regulated thecal genes were also LH regulated in granulosa cells, leaving a total of 58 genes as LH-regulated theca cell specific genes. Most of the 58 genes (i.e., 74%) thecal specific genes including several known thecal markers (CYP17A1, NR5A1) were downregulated, while most genes identified are new to theca. Many of the newly identified upregulated thecal genes (e.g., PTX3, RND3, PPP4R4) were also upregulated in granulosa. Minimal expression differences were observed between aGC and mGC, however, transcripts encoding extracellular proteins (NID2) and matrix modulators (ADAMTS1, SASH1) predominated these differences. We also identified large numbers of unknown LH-regulated granulosa cell genes and discuss their putative roles in ovarian function.
Research resource: preovulatory LH surge effects on follicular theca and granulosa transcriptomes.
Specimen part
View SamplesThe aim of this experiment is to determine the similarities and differences between gene expression profiles in HepaRG cells versus primary human hepatocytes, human liver, and the commonly used HepG2 cell.
A comparison of whole genome gene expression profiles of HepaRG cells and HepG2 cells to primary human hepatocytes and human liver tissues.
Sex, Specimen part, Cell line
View SamplesHuman parvovirus B19 (B19V) infection can cause transient aplastic crisis, persistent viremia, and pure red-cell aplasia. In fetuses, B19V infection can result in non-immune hydrops fetalis and fetal death. To systematically investigate the interaction between B19V and erythoid progenetor cells (EPC), microarray was applied to systematically analyze the dynamic transcriptome of CD36+ EPCs during B19V infection.
Human Parvovirus B19 Utilizes Cellular DNA Replication Machinery for Viral DNA Replication.
Specimen part, Time
View SamplesNuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that induces a battery of cytoprotective genes in response to oxidative/electrophilic stress. Kelch-like ECH associating protein 1 (Keap1) sequesters Nrf2 in the cytosol. The purpose of this study was to investigate the role of Nrf2 in regulating the mRNA of genes encoding drug metabolizing enzymes and xenobiotic transporters. Microarray analysis was performed in livers of Nrf2-null, wild-type, Keap1-knockdown mice with increased Nrf2 activation, and Keap1-hepatocyte knockout mice with maximum Nrf2 activation. In general, Nrf2 did not have a marked effect on uptake transporters, but the mRNAs of organic anion transporting polypeptide 1a1, sodium taurocholate cotransporting polypeptide, and organic anion transporter 2 were decreased with Nrf2 activation. The effect of Nrf2 on cytochrome P450 (Cyp) genes was minimal, with only Cyp2a5, Cyp2c50, Cyp2c54, and Cyp2g1 increased, and Cyp2u1 decreased with enhanced Nrf2 activation. However, Nrf2 increased mRNA of many other phase-I enzymes, such as aldo-keto reductases, carbonyl reductases, and aldehyde dehydrogenase 1. Many genes involved in phase-II drug metabolism were induced by Nrf2, including glutathione S -transferases, UDP- glucuronosyltransferases, and UDP-glucuronic acid synthesis enzymes. Efflux transporters, such as multidrug resistance-associated proteins, breast cancer resistant protein, as well as ATP-binding cassette g5 and g8 were induced by Nrf2. In conclusion, Nrf2 markedly alters hepatic mRNA of a large number of drug metabolizing enzymes and xenobiotic transporters, and thus Nrf2 plays a central role in xenobiotic metabolism and detoxification.
Effect of graded Nrf2 activation on phase-I and -II drug metabolizing enzymes and transporters in mouse liver.
Sex, Age, Specimen part
View Samples