refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 14980 results
Sort by

Filters

Technology

Platform

accession-icon GSE18732
mRNA expression data from skeletal muscle of type 2 diabetes
  • organism-icon Homo sapiens
  • sample-icon 117 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used microarray technology to profile mRNA expression in the skeletal muscle of normal (NGT), glucose intolerant (IGT) and type 2 diabetic (DM) subjects. Groups were classified using WHO criteria and, importantly, the DM group were free of anti hypoglycaemic medication for one week prior to biopsy.

Publication Title

Integration of microRNA changes in vivo identifies novel molecular features of muscle insulin resistance in type 2 diabetes.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE27951
Gene-chip studies of adipogenesis-regulated microRNAs in mouse primary adipocytes and human obesity
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Gene-chip studies of adipogenesis-regulated microRNAs in mouse primary adipocytes and human obesity.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE27949
Gene-chip studies of adipogenesis-regulated microRNAs in mouse primary adipocytes and human obesity (Affymetrix)
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Adipose tissue abundance relies partly on the factors that regulate adipogenesis, i.e. proliferation and differentiation of adipocytes. While the transcriptional program that initiates adipogenesis is well-known, the importance of microRNAs in adipogenesis is less well studied. We thus set out to investigate whether miRNAs would be actively modulated during adipogenesis and obesity. Several models exist to study adipogenesis in vitro, of which the cell line 3T3-L1 is probably the most well known, albeit not the most physiologically appropriate. We used a microarray strategy to provide a global profile of miRNAs in brown and white primary murine adipocytes (prior to and following differentiation) and evaluated the similarity of the responses to non-primary cell models, through literature data-mining. We found 65 miRNAs regulated during in vitro adipogenesis in primary adipocytes. When we compared our primary adipocyte profiles with those of cell lines reported in the literature, we found a high degree of difference in adipogenesis-regulated miRNAs. We evaluated the expression of 10 of our adipogenesis-regulated miRNAs using real-time qPCR and then selected 5 miRNAs that showed robust expression levels and profiled these by qPCR in subcutaneous adipose tissue of 20 humans with a range of body mass indices (BMI, range=21-48). Of the miRNAs tested, mir-21 was both highly expressed in human adipose tissue and positively correlated with BMI (R2=0.49, p<0.001). In conclusion, we provide the preliminary analysis of miRNAs important for primary cell in vitro adipogenesis and find that the inflammation-associated miRNA, mir-21, is up-regulated in subcutaneous adipose tissue in human obesity.

Publication Title

Gene-chip studies of adipogenesis-regulated microRNAs in mouse primary adipocytes and human obesity.

Sample Metadata Fields

Age

View Samples
accession-icon GSE34111
Gene expression in skeletal muscle of cancer patients before and after potentially curative surgery
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The mechanisms underlying muscle wasting in cancer patients remain poorly understood, and consequently there remains an unmet clinical need for new biomarkers and treatment strategies.

Publication Title

Suppression of skeletal muscle turnover in cancer cachexia: evidence from the transcriptome in sequential human muscle biopsies.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE57878
Profile of human liver progenitor cells
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18832
mRNA profiling in rectus abdominis muscle from patients with upper GI cancer
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Rectus abdominis muscle biopsies were obtained from 65 upper gastrointestinal (UGI) cancer patients during open surgery and RNA profiling was performed on a subset of this cohort (n=21) using the Affymetrix U133+2 platform with the aim of identifying biomarkers of cancer related muscle wasting.

Publication Title

Using transcriptomics to identify and validate novel biomarkers of human skeletal muscle cancer cachexia.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon GSE13205
Skeletal muscle transcriptome in ICU patients suffering from sepsis induced multiple organ failure
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Septic patients treated in the intensive care unit (ICU) often develop multiple organ failure including persistent skeletal muscle dysfunction which results in the patients protracted recovery process. We have demonstrated that muscle mitochondrial enzyme activities are impaired in septic ICU patients resulting in decreased cellular energy which will interfere with muscle function and metabolism. Here we use detailed phenotyping and genomics to elucidate mechanisms leading to these impairments. Methodology/Principle Findings Utilising biopsy material from seventeen patients and ten age-matched controls we demonstrate that neither mitochondrial in vivo protein synthesis nor expression of mitochondrial genes are compromised. Indeed, there was partial activation of the mitochondrial biogenesis pathway involving NRF2?/GABP and its target genes TFAM, TFB1M and TFB2M yet clearly this failed to maintain mitochondrial function. We therefore utilised transcript profiling and pathway analysis of ICU patient skeletal muscle to generate insight into the molecular defects driving loss of muscle function and metabolic homeostasis. Gene ontology analysis of Affymetrix analysis demonstrated substantial loss of muscle specific genes, a global oxidative stress response related to most probably cytokine signalling, altered insulin related signalling and a substantial overlap between patients and muscle wasting/inflammatory animal models. MicroRNA 21 processing appeared defective suggesting that post-transcriptional protein synthesis regulation is altered by disruption of tissue microRNA expression. Finally, we were able to demonstrate that the phenotype of skeletal muscle in ICU patients is not merely one of inactivity, it appears to be an actively remodelling tissue, influenced by several mediators, all of which may be open to manipulation with the aim to improve clinical outcome. Conclusions/Significance This first combined protein and transcriptome based analysis of human skeletal muscle obtained from septic patients demonstrated that losses of mitochondria and muscle mass are accompanied by sustained protein synthesis (anabolic process) while dysregulation of transcription programmes appears to fail to compensate for increased damage and proteolysis. Our analysis identified both validated and novel clinically tractable targets to manipulate these failing processes and pursuit of these could lead to new potential treatments.

Publication Title

Dysregulation of mitochondrial dynamics and the muscle transcriptome in ICU patients suffering from sepsis induced multiple organ failure.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE57812
Affymetrix profile of human liver progenitor cells
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human liver progenitor cells (LPCs) show therapeutic potential, however, their in vitro culture results in inadequate function and phenotypic instability reflecting incomplete understanding of in vivo processes. Foetal LPCs capable of differentiation to a hepatocyte phenotype were isolated and mRNA expression profiling carried out using Affymetrix HGU133plus2 microarrays. This was compared to profiles from mature human hepatocytes and human embryonic stem cells undergoing hepatocytic differentiation. Foetal LPCs exhibit a distinct molecular profile consistent with a stem cell signature, cell division, and some liver-specific functions.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE34112
Effect of NO-sulindac treatment on hypoxic prostate cancer cells
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The hypoxia response contributes to radio and chemo-resistance in cancer cells. Our previous work has shown that the nitric oxide donating non-steroidal anti-inflammatory drug (NO-NSAID) NO-sulindac is a potent inhibitor of the hypoxia response in prostate cancer cells and leads to increased susceptibilty to radiation. In this study we used microarrays to investigated the global impact of NO-sulindac on the hypoxia response in prostate cancer cells with a view to determining the mechanism of action.

Publication Title

No associated publication

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE84648
Targeted interference of sin3a-tgif1 function by SID decoy treatment inhibits WNT signaling and invasion in triple negative breast cancer cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Targeted interference of sin3a-tgif1 function by SID decoy treatment inhibits WNT signaling and invasion in triple negative breast cancer cells. MDA-MB-231 cells were treated with scrambled SID control, 2.5M SID peptide or untreated for 24h.

Publication Title

Targeted interference of SIN3A-TGIF1 function by SID decoy treatment inhibits Wnt signaling and invasion in triple negative breast cancer cells.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact