refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 14981 results
Sort by

Filters

Technology

Platform

accession-icon GSE45487
Identification of genes responsive to low-intensity pulsed ultrasound (LIPUS) in MC3T3-E1 preosteoblast cells
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Although LIPUS has been shown to enhance fracture healing, the underlying mechanism of LIPUS remains to be fully elucidated. Here, to understand the molecular mechanism underlying cellular responses to LIPUS, we investigated gene expression profiles in mouse MC3T3-E1 preosteoblast cells using a GeneChip system.

Publication Title

Genes responsive to low-intensity pulsed ultrasound in MC3T3-E1 preosteoblast cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Time

View Samples
accession-icon GSE23405
Gene profiling of apoptosis induced by heat stress in U937 human lymphoma cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Hyperthermia is widely used to treat patients with various cancers. 42.5C is well known as the inflection point of hyperthermia and generally up to 42C of hyperthermia is used in clinical cases combined with other therapies. Here, the effects of heat stress at 42 or 44C for 15 min on the gene expression in human lymphoma U937 cells were investigated using an Affymetrix GeneChip system. The cells were treated with heat stress (42 or 44C for 15 min), followed by incubation for 0, 1, 3 or 6 h at 37C. The percentage of DNA fragmentation was 8.4 2.2 (mean SD) at 42C for 6 h and 21.0 2.0 at 44C for 6 h. Of approximately 47,000 probe sets analyzed, many genes that were differentially expressed by a factor 2.0 or greater were identified in the cells treated with heat stress at 42 and 44C.

Publication Title

Identification of biological functions and gene networks regulated by heat stress in U937 human lymphoma cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE75127
Identification of genes involved in enhancement of hyperthermia sensitivity by knockdown of BAG3 in human oral squamous cell carcinoma cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Hyperthermia (HT) treatments in combination with either chemotherapy, radiotherapy or both are used for patients with cancer in various organs. However, the acquisition of thermotolerance in cancer cells due to the increase in cytoprotective proteins attenuates the therapeutic effects of HT. BAG3 (BCL2-associated athanogene 3) is a cytoprotective protein that acts against various stresses including heat stress. Recently, we demonstrated that the inhibition of BAG3 improves cell death sensitivity to HT in cancer cells. However, a detailed molecular mechanism involved in the enhancement of HT sensitivity by BAG3-knockdown (KD) in cancer cells is unclear.

Publication Title

Network analysis of genes involved in the enhancement of hyperthermia sensitivity by the knockdown of BAG3 in human oral squamous cell carcinoma cells.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line

View Samples
accession-icon GSE19954
Telmisartan Improves Insulin Resistance with Modulating Adipose Tissue Macrophage Polarization in High Fat-fed Mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Diet-induced obesity is reported to induce a phenotypic switch in adipose tissue macrophages from an antiinflammatory M2 state to a proinflammatory M1 state. Telmisartan, an angiotensin II type 1 receptor antagonist and a peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonist, reportedly has beneficial effects on insulin sensitivity. We studied the effects of telmisartan on the adipose tissue macrophage phenotype in high fat-fed mice. Telmisartan was administered for 5 weeks to high fat-fed C57BL/6 mice. Insulin sensitivity, macrophage infiltration, and the gene expressions of M1 and M2 markers in epididymal fat tissues were examined. Insulin- or a glucose-tolerance test showed that telmisartan treatment improved insulin resistance, decreasing the body weight gain, visceral fat weight and adipocyte size without affecting the amount of food intake. Telmisartan treatment reduced the number of CD11c-positive cells and crown-like structures. Telmisartan reduced the mRNA expressions of M1 macrophage markers, such as TNF-alpha and IL-6, and increased the expression of M2 markers, such as IL-10 and Mgl2. The reduction of M1 macrophage markers, as well as the increased gene expression of M2 markers especially IL-10, is a possible mechanism for the improvement of insulin sensitivity by telmisartan.

Publication Title

Telmisartan improves insulin resistance and modulates adipose tissue macrophage polarization in high-fat-fed mice.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE6961
Genes in nonpermissive temperature-induced cell differentiation of testicular Sertoli TTE3 cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

We performed global scale microarray analysis to identify detailed mechanisms by which nonpermissive temperature induces cell differentiation in testicular Sertoli TTE3 cells harboring temperature-sensitive SV40 large T-antigen by using an Affymetrix GeneChip system. Testicular Sertoli TTE3 cells used in the present study were derived from transgenic mice harboring a temperature-sensitive simian virus 40 large T-antigen. In the TTE3 cells, inactivation of the T-antigen by a nonpermissive temperature at 39C led to cell differentiation accompanying elevation of transferrin and cyclin-dependent kinase inhibitor CDKN1A. Of the 22, 690 probe sets analyzed, nonpermissive temperature up-regulated 729 probe sets and down-regulated 471 probe sets by >2.0-fold.

Publication Title

Genetic networks in nonpermissive temperature-induced cell differentiation of Sertoli TTE3 cells harboring temperature-sensitive SV40 large T-antigen.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE24783
Gene profiling of the cell death induced by heat stress in HSC-3 human oral squamous carcinoma cells
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Hyperthermia is widely used to treat patients with various cancers. The 42.5C is well known as inflection point of hyperthermia and generally up to 42C of hyperthermia is used in clinical case to combine with other therapy. Here, the effects of heat stress at 42 or 44C for 90 min on the gene expression in HSC-3 human oral squamous carcinoma cells were investigated using an Affymetrix GeneChip system. The cells were treated with heat stress (42 or 44C for 90 min) and followed by incubation for 0, 6, or 12 h at 37C. The percentage of cell death was 5.0 1.5 (mean SD) at 42C for 12 h and 17.4 0.6 at 44C for 12 h. Of approximately 47,000 probe sets analyzed, many genes that were differentially expressed by a factor 2.0 or greater were identified in the cells treated with heat stress at 42 and 44C.

Publication Title

Gene networks related to the cell death elicited by hyperthermia in human oral squamous cell carcinoma HSC-3 cells.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE53937
Identification of genes involved in cell death induced by sodium fluoride in rat oral epithelial cells
  • organism-icon Rattus norvegicus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Although an appropriate range of fluoride is thought to be safe and effective, excessive fluoride intake results in toxic effects in either hard tissues of teeth and skeleton or soft tissues of kidney, lung and brain. It is also well known that fluoride at a millimolar range elicits the complex cellular responses such as enzyme activity, signal transduction and apoptosis in many kinds of cells. However, its toxic effects are still unclear.

Publication Title

Genes and gene networks involved in sodium fluoride-elicited cell death accompanying endoplasmic reticulum stress in oral epithelial cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Time

View Samples
accession-icon GSE76022
Identification of genes involved in apoptosis-induced by cold atmospheric pressure plasma in human lymphoma U937 cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Cold atmospheric pressure plasma (CAP) is known as a source of biologically active agents, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS). Recent medical investigations have focused on applying CAP to cancer treatment. There is also growing evidence that exposure of cells to CAP or CAP-activated medium induces apoptosis in cancer cells, and ROS and/or RNS are considered to be effective agents to CAP-induced apoptosis. More recently, we demonstrated that Ar-CAP or Ar containing 2.5 % of N2 (Ar-N2-CAP) significantly induced apoptosis in human lymphoma U937 cells. However, a detailed molecular mechanism underling the induction of apoptosis by CAP in cancer cells is unclear.

Publication Title

Effects of nitrogen on the apoptosis of and changes in gene expression in human lymphoma U937 cells exposed to argon-based cold atmospheric pressure plasma.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Treatment

View Samples
accession-icon GSE103475
Identification of genes involved in the cell growth arrest by knockout of BAG3 in human cervical carcinoma HeLa cells
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

BAG3 (BCL2-associated athanogene 3) is a member of the BAG protein family. BAG3 affects a wide variety of cellular events including cell proliferation, apoptosis and autophagy. Recently our data demonstrated that knockout (KO) of BAG3 induces the cell growth arrest in human cervical carcinoma HeLa cells.

Publication Title

Identification of genes and genetic networks associated with BAG3‑dependent cell proliferation and cell survival in human cervical cancer HeLa cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE103439
Identification of genes involved in basal cell carcinoma of the eyelid
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Basal cell carcinoma (BCC) is the most frequent malignant tumor of the eyelid. However, there is limited understanding of how altered gene expression of BCC of the eyelid related to the pathogenesis.

Publication Title

Gene networks in basal cell carcinoma of the eyelid, analyzed using gene expression profiling.

Sample Metadata Fields

Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact