refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 12300 results
Sort by

Filters

Technology

Platform

accession-icon GSE54408
Riding the spermatogenic wave: Profiling gene expression within neonatal germ and Sertoli cells during a synchronized initial wave of spermatogenesis
  • organism-icon Mus musculus
  • sample-icon 77 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

WIN 18,446/RA treatment of neonatal mice was used to synchronize the initial wave of spermatogenesis and identify novel messages expressed within either germ or Sertoli cells as spermatogonia enter meiosis.

Publication Title

Riding the spermatogenic wave: profiling gene expression within neonatal germ and sertoli cells during a synchronized initial wave of spermatogenesis in mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE926
Murine Testis Developmental Time Course
  • organism-icon Mus musculus
  • sample-icon 66 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Murine testis developmental time course created from tissue samples collected from birth through adulthood and hybridized to MGU74v2 A, B, and C chips in duplicate

Publication Title

The murine testicular transcriptome: characterizing gene expression in the testis during the progression of spermatogenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15431
Global Gene Expression in the Human Fetal Testis and Ovary
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This study describes a temporal profile of gene expression from normal human fetal testes and ovaries. Gonads from 34 fetuses between 9 weeks and 20 weeks of gestation were obtained from the Department of Pathology and the Birth Defects Research Laboratory at the University of Washington. Relative transcript levels were determined using the Affymetrix Human Genome U133A Plus 2.0 arrays.

Publication Title

Global gene expression in the human fetal testis and ovary.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE45799
RiboTag analysis of actively translated mRNAs in Sertoli and Leydig cells in vivo
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Analysis of Sertoli and Leydig cell translatome utilizing an in vivo ribosome tagging strategy (RiboTag) that allows a detailed and physiologically relevant characterization of the polysome-associated mRNAs in vivo. Although progress has been made in the identification of specific transcripts that are translated in Sertoli and Leydig cells and their response to hormones, efforts to expand these studies have been restricted by technical hurdles. Our analysis identified all previously characterized Leydig and Sertoli cell-specific markers and identified in a comprehensive manner novel markers of Leydig and Sertoli cells; the translational response of these two cell types to gonadotropins or testosterone was also investigated.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Disease, Treatment

View Samples
accession-icon GSE1358
Embryonic Testis Developmental Time Course
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Time course of gene expression in the murine embryonic testis from the time of the indifferent gonad (11.5dpc) to birth (18.5dpc)

Publication Title

Profiling gene expression during the differentiation and development of the murine embryonic gonad.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE1359
Embryonic Ovary Developmental Time Course
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Time course of gene expression in the murine embryonic ovary from the time of the indifferent gonad (11.5dpc) to birth (18.5dpc)

Publication Title

Profiling gene expression during the differentiation and development of the murine embryonic gonad.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE4733
Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling
  • organism-icon Arabidopsis thaliana
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

In Arabidopsis, jasmonate is required for stamen and pollen maturation. Mutants deficient in jasmonate synthesis, such as opr3, are male-sterile but become fertile when jasmonate is applied to developing flower buds. We have used ATH1 oligonucleotide arrays to follow gene expression in opr3 stamens for 22 hours following jasmonate treatment. In these experiments, a total of 821 genes were specifically induced by jasmonate and 480 repressed. Comparisons with data from previous studies indicate that these genes constitute a stamen-specific jasmonate transcriptome, with a large proportion (70%) of the genes expressed in the sporophytic tissue but not in the pollen. Bioinformatics tools allowed us to associate many of the induced genes with metabolic pathways that are likely up-regulated during jasmonate-induced maturation. Our pathway analysis led to the identification of specific genes within larger families of homologues that apparently encode stamen-specific isozymes. Extensive additional analysis of our dataset identified 13 transcription factors that may be key regulators of the stamen maturation processes triggered by jasmonate. Two of these transcription factors, MYB21 and MYB24, are the only members of subgroup 19 of the R2R3 family of MYB proteins. A myb21 mutant obtained by reverse genetics exhibited shorter anther filaments, delayed anther dehiscence and greatly reduced male fertility. A myb24 mutant was phenotypically wild type, but production of a myb21myb24 double mutant indicated that introduction of the myb24 mutation exacerbated all three aspects of the myb21 phenotype. Exogenous jasmonate could not restore fertility to myb21 or myb21myb24 mutant plants. Together with the data from transcriptional profiling, these results indicate that MYB21 and MYB24 are induced by jasmonate and mediate important aspects of the jasmonate response during stamen development.

Publication Title

Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE22616
Gene expression in the Efferent duct, Epididymis, and Vas deferens during Embryonic Development
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The tissues of the male reproductive tract are characterized by distinct morphologies, ranging from highly coiled to un-coiled. Global gene expression profiles of the efferent ducts, epididymis, and vas deferens were generated from embryonic day 14.5 to postnatal day 1, the period when gross morphological changes are initiated and tissue-specific morphologies emerge. Expression profiles of homeobox genes, as potential regionalization factors, were examined. Tissue transcriptome comparison identified two expression profiles of interest: genes similar between the epididymis and vas deferens early in development but dissimilar later and genes dissimilar between the epididymis and efferent duct early but similar later. Ontology analysis demonstrated cell adhesion-associated genes to be highly enriched in both comparisons. This work identified several potential regulators of cell adhesion along the tract and indicates cell adhesion may be modulated in a tissue-specific manner, playing an important role in the establishment of each tissues final morphology.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE21535
Effect of lactation on transcriptomic expression in bovine adipose tissue
  • organism-icon Bos taurus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

The objective was to study the transcriptomic changes in adipose tissue in the early stages of lactation, specifically in Bos Taurus, Holstein dairy cattle as a function of milk production and genetic merit.

Publication Title

Differential expression of genes in adipose tissue of first-lactation dairy cattle.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE23129
The effects of bud removal on soybean leaf gene expression.
  • organism-icon Glycine max
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Soybean Genome Array (soybean)

Description

The paraveinal mesophyll (PVM) of soybean leaves is a layer of laterally expanded cells sandwiched between the palisade and spongy mesophyll chlorenchyma. The vacuoles of PVM cells contain an abundance of a putative vegetative storage protein, VSP (, ). VSP is is constitutively produced, but is up-regulated during sink limitation experiments involving flower, fruit, or vegetative bud removal. Soybean vegetative lipoxygenases (Vlx), consisting of 5 isozymes (Vlx, A-D), have been identified as potential storage proteins because they accumulate to high levels with experimental sink limitation and have been co-localized with VSP to the vacuoles of PVM cells. We re-investigated the sub-cellular locations of these enzymes with TEM immuno-cytochemistry. We employed laser micro-dissection to compared RNA expression of PVM cells with mesophyll chlorenchyma cells, and we performed a micro-array analysis of soybean leaf samples representing a time-course, sink-limitation, experiment. We found that none of the Vlx isozymes co-localize with putative storage proteins in PVM vacuoles, and that our sink limitation experiment (typical of those used in the past) induced a strong up-regulation of stress response genes, simultaneous with the up-regulation of the Vlx isozymes. Our findings do not support a storage function for soybean Vlx.

Publication Title

Experimental sink removal induces stress responses, including shifts in amino acid and phenylpropanoid metabolism, in soybean leaves.

Sample Metadata Fields

Specimen part, Disease

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact