refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 391 results
Sort by

Filters

Technology

Platform

accession-icon E-MEXP-1934
Transcription profiling by array of Arabidopsis plants treated either with mock or menadione sodium bisulphite and sampled after 3, 6 and 24 hours
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Arabidopsis plants were treated either with mock or MSB (0.2 mM of Menadione sodium bisulphite). <br></br>Tissue was sampled after 3, 6 and 24 hours.

Publication Title

Molecular analysis of menadione-induced resistance against biotic stress in Arabidopsis.

Sample Metadata Fields

Age, Specimen part, Compound, Time

View Samples
accession-icon SRP059279
3D Chromosome Regulatory Landscape of Human Pluripotent Cells [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

The control of cell identity is orchestrated by transcriptional and chromatin regulators in the context of specific chromosome structures. With the recent isolation of human naive embryonic stem cells (ESCs) representative of the ground state of pluripotency, it is possible to deduce this regulatory landscape in one of the earliest stages of human development. Here we generate cohesin ChIA-PET chromatin interaction data in naive and primed human ESCs and use it to reconstruct and compare the 3D regulatory landscapes of these two stages of early human development. The results reveal shared and stage-specific regulatory landscapes of topological domains and their subdomains, which consist of CTCF-CTCF/cohesin loops and enhancer-promoter/cohesin loops. The enhancer-promoter loop data reveal that genes with key roles in pluripotency are nearly always regulated by one or more super-enhancers, and show that these genes tend to occur in insulated neighborhoods. Our results reveal the key features of the 3D regulatory landscape of early human cells that form the foundation for embryonic development. Overall design: Polyadenylated RNA-seq from naive and primed human embroynic stem cells.

Publication Title

3D Chromosome Regulatory Landscape of Human Pluripotent Cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP015640
Comprehensive comparative analysis of RNA sequencing methods for degraded or low input samples
  • organism-icon Homo sapiens
  • sample-icon 64 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500, Illumina HiSeq 2000

Description

RNA-Seq is an effective method to study the transcriptome, but can be difficult to apply to scarce or degraded RNA from fixed clinical samples, rare cell populations, or cadavers. Recent studies have proposed several methods for RNA-Seq of low quality and/or low quantity samples, but their relative merits have not been systematically analyzed. Here, we compare five such methods using a comprehensive set of metrics, relevant to applications such as transcriptome annotation, transcript discovery, and gene expression. Using a single human RNA sample, we constructed and deeply sequenced 10 libraries with these methods and two control libraries. We find that the RNase H method performed best for low quality RNA, and can even effectively replace oligo (dT) based methods for standard RNA-Seq. SMART and NuGEN had distinct strengths for low quantity RNA. Our analysis allows biologists to select the most suitable methods and provides a benchmark for future method development. Overall design: Examination of 9 different RNA-Seq libraries starting from total RNA from 5 distinct methods; also 3 control RNA-Seq libraries

Publication Title

Comparative analysis of RNA sequencing methods for degraded or low-input samples.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE1994
Neuron susceptibility to seizure-induced injury. Dingledine-5R01NS031373-10-2
  • organism-icon Rattus norvegicus
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

Neurodegenerative brain disorders become more common in the aged. Most of these disorders are associated with or caused by selective death of certain neuronal subpopulations. The mechanisms underlying the differential vulnerability of certain neuronal populations are still largely unexplored and few neuroprotective treatments are available to date. Elucidation of these mechanisms may lead to a greater understanding of the pathogenesis and treatment of neurodegenerative diseases. Moreover, preconditioning by a short seizure confers neuroprotection following a subsequent prolonged seizure. Our goal is to identify pathways that confer vulnerability and resistance to neurotoxic conditions by comparing the basal and preconditioned gene expression profiles of three differentially vulnerable hippocampal neuron populations.

Publication Title

Gene expression changes after seizure preconditioning in the three major hippocampal cell layers.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE27281
Whole genome analysis of pollen-pistil interactions in Arabidopsis thaliana: time course
  • organism-icon Arabidopsis thaliana
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Plant reproduction depends on the concerted activation of many genes to assure the correct communication between pollen and pistil. Here we queried the whole transcriptome of Arabidopsis thaliana in order to identify genes with specific reproductive functions.

Publication Title

Whole genome analysis of gene expression reveals coordinated activation of signaling and metabolic pathways during pollen-pistil interactions in Arabidopsis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38486
Transcriptional Profiling of Arabidopsis Root Hairs and Pollen Defines an Apical Growth Signature
  • organism-icon Arabidopsis thaliana
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Despite their different origin and function, both pollen tubes and root hairs share the same sort of apical growth mechanism, i.e., the spatially focused cell expansion at the very apex. Ion fluxes, membrane trafficking, the actin cytoskeleton and their interconnection via signaling networks have been identified as fundamental processes underlying this kind of growth. Several molecules involved in apical growth have been identified, but the genetic basis is far from being fully characterized. We have used Affymetrix Arabidopsis ATH1 GeneChips to obtain the expression profiles of isolated Arabidopsis root hairs. A comparison with the expression profile of flow-sorted pollen grains reveals an overlap in the expression of 4989 genes, which corresponds to 42% of the root hair transcriptome and 76% of the pollen transcriptome, respectively. Our comparison with transcriptional profiles of vegetative tissues by principal component analysis and hierarchical clustering shows a clear separation of these samples comprised of cell types with diffuse growth from the two cell types with apical growth. 277 genes are enriched and 49 selectively expressed, respectively, in root hairs and pollen. From this set of genes emerges an apical growth signature containing novel candidate genes for apical growth determination.

Publication Title

Transcriptional profiling of Arabidopsis root hairs and pollen defines an apical cell growth signature.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE42460
Budding yeast Wapl controls sister chromatid cohesion maintenance and the chromosome condensation status
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Budding yeast Wapl controls sister chromatid cohesion maintenance and chromosome condensation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE42458
Budding yeast Wapl controls sister chromatid cohesion maintenance and the chromosome condensation status [expression]
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Cohesin acetylation by Eco1 during DNA replication establishes sister chromatid cohesion. We show that acetylation makes cohesin resistant to Wapl activity from S-phase until mitosis. Wapl turns out to be a key regulator of cohesin dynamics on chromosomes by controling cohesin maintenance following its establishment in S-phase and its role in chromosome condensation.

Publication Title

Budding yeast Wapl controls sister chromatid cohesion maintenance and chromosome condensation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE52952
miRNAs trigger widespread epigenetically-activated siRNAs from transposons in Arabidopsis
  • organism-icon Arabidopsis thaliana
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE21163
Expression data from pancreatic cancer cell lines
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

Expression data from pancreatic cancer cell lines and non-neoplastic pancreatic cell line HPDE

Publication Title

Cyclooxygenase-deficient pancreatic cancer cells use exogenous sources of prostaglandins.

Sample Metadata Fields

Sex, Specimen part, Disease, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact