refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 274 results
Sort by

Filters

Technology

Platform

accession-icon GSE61100
Loss of p21 expression enhances DNA damage, cholestasis and hepatocarcinogenesis in the liver
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Overexpression of p21 in NEMOhepa animals protects against DNA damage, acceleration of hepatocarcinogenesis and cholestasis. As strengthened by our LPS stimulation experiments, we identified a novel protective role of p21 against DNA damage.

Publication Title

p21 ablation in liver enhances DNA damage, cholestasis, and carcinogenesis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE140498
Hepatocytic c-Jun N-terminal kinases (JNK)-1/2 function determines cell fate during carcinogenesis
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Aberrant biliary hyperproliferation resulting from lack of differentiating signals favoring the maintenance of an immature and proliferative phenotype by biliary epithelial cells are ultimately responsible for ducto/cystogenesis and intrahepatic cholangiocarcinoma (CCA) formation. Mitogen-activated protein kinase (MAPK) signaling is pivotal for CCA-related tumorigenesis. In particular, targeted inhibition of JNK signaling has shown therapeutic potential. However, the cell-type specific role and mechanisms triggered by JNK in liver parenchymal cells during CCA remains largely unknown. Here, we aimed to investigate the relevance of JNK function in hepatocytes in experimental carcinogenesis. JNK signaling in hepatocytes was inhibited by crossing AlbCre-JNK1LoxP/LoxP mice with JNK2-deficient mice to generate Jnk1LoxP/LoxP/Jnk2−/− (JNKΔhepa) mice. JNKΔhepa mice were further interbred with hepatocyte-specific Nemo-knockout mice (NEMOΔhepa), a model of chronic liver inflammation and spontaneous hepatocarcinogenesis, to generate NEMO/JNKΔhepa mice. The impact of JNK deletion on liver damage, cell death, compensatory proliferation, fibrogenesis, and tumor development in NEMOΔhepa mice was determined. Moreover, regulation of essential genes was assessed by RT-PCR, immunoblottings and immunostains. Additionally, JNK2 inhibition, specifically in hepatocytes of NEMOΔhepa/JNK1Δhepa mice, was performed using siRNA (siJnk2) nanodelivery. Finally, active signaling pathways were blocked using specific inhibitors. Compound deletion of JNK1 and JNK2 in hepatocytes diminished hepatocarcinogenesis in both the DEN model of hepatocarcinogenesis and in NEMOΔhepa mice, but, in contrast, caused massive proliferation of the biliary ducts. Indeed, JNK deficiency in hepatocytes of NEMOΔhepa (NEMOΔhepa/JNKΔhepa) animals caused elevated fibrosis, increased apoptosis, increased compensatory proliferation, and elevated inflammatory cytokines expression, but reduced hepatocarcinogenesis. Furthermore, siJnk2 treatment in NEMOΔhepa/JNK1Δhepa mice recapitulated the phenotype of NEMOΔhepa/JNKΔhepa mice. Next, we sought to investigate the impact of molecular pathways in response to compound JNK deficiency in NEMOΔhepa mice. We found that NEMOΔhepa/JNKΔhepa livers exhibited overexpression of the IL-6/Stat3 pathway in addition to EGFR-Raf-MEK-ERK cascade. The functional relevance was tested by administering lapatinib - a dual tyrosine kinase inhibitor (TKI) of ErbB2 and EGFR signaling - to NEMOΔhepa/JNKΔhepa mice. Lapatinib effectively inhibited cystogenesis, improved transaminases and effectively blocked EGFR-Raf-MEK-ERK signaling. Our study defines a novel function of JNK in cell fate as well as hepatocarcinogenesis and opens new therapeutic avenues devised to inhibit pathways of cholangiocarcinogenesis.

Publication Title

Loss of c-Jun N-terminal Kinase 1 and 2 Function in Liver Epithelial Cells Triggers Biliary Hyperproliferation Resembling Cholangiocarcinoma.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE45636
eIF3a in Urinary Bladder Cancer in vivo and in vitro insights
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The eukaryotic translation initiation factor (eIF) 3a is described in various tumor entities as potential tumor marker involved in development and progression of cancer. eIF3a is the largest subunit of the eIF3 complex, a key functional entity in 80S establishment and translation initiation. We hypothesize that eIF3a is more a specific than global translation initiator and involved in signalling pathways that are frequently targeted in UBC therapy.

Publication Title

eIF3a is over-expressed in urinary bladder cancer and influences its phenotype independent of translation initiation.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE86575
MicroRNA-196b-5p is a prognostic factor in colorectal cancer patients and influences cancer cell migration and metastases formation through regulation of HOXB7 and GalNT5
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Background: MicroRNA-196b-5p (miR-196b-5p) has been previously involved in carcinogenesis, though its role in colorectal cancer (CRC) patients and biology remains controversially. In our current study, we systematically explored the clinical significance and biological relevance of miR-196b-5p, as well as the underlying molecular mechanisms regulated by miR-196b-5p in colorectal cancer.

Publication Title

miR-196b-5p Regulates Colorectal Cancer Cell Migration and Metastases through Interaction with HOXB7 and GALNT5.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE10377
Strains for eQTL CNV Analysis
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Background

Publication Title

Expression quantitative trait loci mapping identifies new genetic models of glutathione S-transferase variation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE38792
Visceral fat trancriptome in obstructive sleep apnea
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Rationale: Obstructive sleep apnea (OSA) has been associated with metabolic dysregulation and systemic inflammation. This may be due to pathophysiologic effects of OSA on visceral adipose tissue. We sought to assess the transcriptional consequences of OSA on adipocytes by utilizing pathway-focused analyses.

Publication Title

A pathway-based analysis on the effects of obstructive sleep apnea in modulating visceral fat transcriptome.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE6765
Aeromonas caviae infection, 24 hours
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Aeromonas caviae has been associated with human gastrointestinal disease. Strains of this species typically lack virulence factors (VFs) such as enterotoxins and hemolysins that are produced by other human pathogens of the Aeromonas genus. Microarray profiling of murine small intestinal extracts, 24 hours after oral infection with an A. caviae strain, provides evidence of a Th1 type immune response. A large number of gamma-interferon (-IFN) induced genes are up-regulated as well as several tumor necrosis factor-alpha (TNF-) transcripts. A. caviae has always been considered an opportunistic pathogen because it lacks obvious virulence factors. This current effort suggests A. caviae colonizes murine intestinal tract and causes what has been described by others as a dysregulatory cytokine response leading to an irritable bowel-like syndrome. This response would explain why a number of diarrheal waterborne outbreaks have been attributed to A. caviae even though it lacks obvious enteropathogenic properties.

Publication Title

Aeromonas caviae strain induces Th1 cytokine response in mouse intestinal tract.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE49800
Effects of CPAP Therapy on Leukocyte Gene Expression
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Rationale: Obstructive sleep apnea (OSA) has been associated with a number of chronic disorders that may improve with effective therapy. However, the molecular pathways affected by continuous positive airway pressure (CPAP) treatment are largely unknown. We sought to assess the system-wide consequences of CPAP therapy by transcriptionally profiling peripheral blood leukocytes (PBLs). Methods: Subjects diagnosed with severe OSA were treated with CPAP, and whole-genome expression measurement of PBLs was performed at baseline and following therapy. We used Gene Set Enrichment Analysis (GSEA) to identify gene sets that were differentially enriched. Network analysis was then applied to identify key drivers of pathways influenced by CPAP. Results: 18 subjects with severe OSA (apnea hypopnea index 30 events/hour) underwent CPAP therapy and microarray analysis of their PBLs. Treatment with CPAP improved AHI, daytime sleepiness and blood pressure but did not affect anthropometric measures. GSEA revealed a number of enriched gene sets, many of which were involved in neoplastic processes and displayed down-regulated expression patterns in response to CPAP. Network analysis identified several densely connected genes that are important modulators of cancer and tumor growth. Conclusions: Effective therapy of OSA with CPAP is associated with alterations in circulating leukocyte gene expression. Functional enrichment and network analyses highlighted transcriptional suppression in cancer-related pathways suggesting potentially novel mechanisms linking OSA with neoplastic signatures.

Publication Title

Treatment of obstructive sleep apnea alters cancer-associated transcriptional signatures in circulating leukocytes.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon E-MEXP-515
Transcription profiling of diabetic neuropathy in dorsal root ganglia from streptozotocin-diabetic male wistar rats over the first 8 weeks of diabetes
  • organism-icon Rattus norvegicus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302), UNKNOWN

Description

A study of diabetic neuropathy in dorsal root ganglia from streptozotocin-diabetic male wistar rats over the first 8 weeks of diabetes

Publication Title

Identification of changes in gene expression in dorsal root ganglia in diabetic neuropathy: correlation with functional deficits.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage, Time

View Samples
accession-icon GSE93222
Microarray analysis on fruit fly (Drosophila melanogaster) larvae and fat bodies of fruit fly larvae fed with either a semi-purified diet only or a semi-purified diet supplemented with palm fruit juice (PFJ)
  • organism-icon Drosophila melanogaster
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Drosophila Gene 1.0 ST Array (drogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Drosophila larvae fed palm fruit juice (PFJ) delay pupation via expression regulation of hormetic stress response genes linked to ageing and longevity.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact