refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 320 results
Sort by

Filters

Technology

Platform

accession-icon GSE42867
Gene expression changes in subclones of a Burkitt lymphoma cell line with different patterns of EBV latent infection
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study we have investigated the gene expression profiles of three different types of subclone all generated by single cell cloning of the same parental EBV positive Burkitt lymphoma cell line Awia-BL. These included EBV negative clones which have lost the virus episome, EBV positive clones with a conventional Latency I form of infection and EBV positive clones with an atypical Wp-restricted form of infection.

Publication Title

Different patterns of Epstein-Barr virus latency in endemic Burkitt lymphoma (BL) lead to distinct variants within the BL-associated gene expression signature.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE43798
Microarray of cardiac biventricle from PGC-1a-/-bf/f/MerCre mice
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The following abstract from the submitted manuscript describes the major findings of this work.

Publication Title

A role for peroxisome proliferator-activated receptor γ coactivator-1 in the control of mitochondrial dynamics during postnatal cardiac growth.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP090348
Molecular architecture underlying fluid absorption by the developing inner ear
  • organism-icon Mus musculus
  • sample-icon 199 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1000

Description

Single-cell RNA-seq analysis of pre- and postnatal mouse endolymphatic sac demonstrates two types of differentiated cells distinguished by their mRNA expression signatures. Overall design: mRNA-seq profiles from 213 single cells from embryonic day 12.5, 16.5, postnatal day 5 and 30 mouse endolymphatic sac were analyzed

Publication Title

Molecular architecture underlying fluid absorption by the developing inner ear.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE25407
Expression data from breast tumors and reduction mammoplasty explants
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Breast tumorigenesis involves modulation of gene expression.

Publication Title

Nucleotide excision repair deficiency is intrinsic in sporadic stage I breast cancer.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE29899
Long non-coding RNAs regulate adipogenesis
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Long noncoding RNAs regulate adipogenesis.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE29897
Long non-coding RNAs regulate adipogenesis (Affymetrix)
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Adipogenesis involves the regulation of hundreds of genes by several well-studied proteins, but the role of long, noncoding RNAs in this process has not been defined. We track the regulation of hundreds of lncRNAs during adipocyte differentiation, and find several that are essential for this process.

Publication Title

Long noncoding RNAs regulate adipogenesis.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon SRP007112
Long non-coding RNAs regulate adipogenesis (Illumina RNA-Seq)
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer

Description

Adipogenesis involves the regulation of hundreds of genes by several well-studied proteins, but the role of long, noncoding RNAs in this process has not been defined. We track the regulation of hundreds of lncRNAs during adipocyte differentiation, and find several that are essential for this process. Overall design: We extractedbrown and white primary adipocytes and pre-adipocytes and profiled lncRNA expresssion via mRNA-Seq. We also profiled cultured, differentiated adipocytes to verify that we could recapitulate the adipocyte expression profile in preparation for a loss-of-function screen for essential adipogenic lincRNAs.

Publication Title

Long noncoding RNAs regulate adipogenesis.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE56348
Gene expression microarray profiling in mice hearts with pathological and physiological cardiac hypertrophy
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Compelling evidence suggests that mitochondrial dysfunction contributes to the pathogenesis of heart failure, including defects in the substrate oxidation, and the electron transport chain (ETC) and oxidative phosphorylation (OXPHOS). However, whether such changes occur early in the development of heart failure, and are potentially involved in the pathologic events that lead to cardiac dysfunction is unknown. To address this question, we conducted transcriptomic/metabolomics profiling in hearts of mice with two progressive stages of pressure overload-induced cardiac hypetrophy: i) cardiac hypertrophy with preserved ventricular function achieved via transverse aortic constriction for 4 weeks (TAC) and ii) decompensated cardiac hypertrophy or heart failure (HF) caused by combining 4 wk TAC with a small apical myocardial infarction. Transcriptomic analyses revealed, as shown previously, downregulated expression of genes involved in mitochondrial fatty acid oxidation in both TAC and HF hearts compared to sham-operated control hearts. Surprisingly, however, there were very few changes in expression of genes involved in other mitochondrial energy transduction pathways, ETC, or OXPHOS. Metabolomic analyses demonstrated significant alterations in pathway metabolite levels in HF (but not in TAC), including elevations in acylcarnitines, a subset of amino acids, and the lactate/pyruvate ratio. In contrast, the majority of organic acids were lower than controls. This metabolite profile suggests bottlenecks in the carbon substrate input to the TCA cycle. This transcriptomic/metabolomic profile was markedly different from that of mice PGC-1a/b deficiency in which a global downregulation of genes involved in mitochondrial ETC and OXPHOS was noted. In addition, the transcriptomic/metabolomic signatures of HF differed markedly from that of the exercise-trained mouse heart. We conclude that in contrast to current dogma, alterations in mitochondrial metabolism that occur early in the development of heart failure reflect largely post-transcriptional mechanisms resulting in impedance to substrate flux into the TCA cycle, reflected by alterations in the metabolome.

Publication Title

Energy metabolic reprogramming in the hypertrophied and early stage failing heart: a multisystems approach.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE45274
Optimization of Direct Fibroblast Reprogramming to Cardiomyocytes Using Calcium Activity as a Functional Measure of Success
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Direct conversion of fibroblasts to induced cardiomyocytes (iCMs) has great potential for regenerative medicine. Recent publications have reported significant progress, but the evaluation of reprogramming has relied upon non-functional measures such as flow cytometry for cardiomyocyte markers or GFP expression driven by a cardiomyocyte-specific promoter. The issue is one of practicality: the most stringent measures - electrophysiology to detect cell excitation and the presence of spontaneously contracting myocytes - are not readily quantifiable in the large numbers of cells screened in reprogramming experiments. However, excitation and contraction are linked by a third functional characteristic of cardiomyocytes: the rhythmic oscillation of intracellular calcium levels. We set out to optimize direct conversion of fibroblasts to iCMs with a quantifiable calcium reporter to rapidly assess functional transdifferentiation. We constructed a reporter system in which the calcium indicator GCaMP is driven by the cardiomyocyte-specific Troponin T promoter. Using calcium activity as our primary outcome measure, we compared several published combinations of transcription factors along with novel combinations in mouse embryonic fibroblasts. The most effective combination consisted of Hand2, Nkx2.5, Gata4, Mef2c, and Tbx5 (HNGMT). This combination is >50-fold more efficient than GMT alone and produces iCMs with cardiomyocyte marker expression, robust calcium oscillation, and spontaneous beating that persists for weeks following inactivation of reprogramming factors. HNGMT is also significantly more effective than previously published factor combinations for the transdifferentiation of adult mouse cardiac fibroblasts to iCMs. Quantification of calcium function is a convenient and effective means for the identification and evaluation of cardiomyocytes generated by direct reprogramming. Using this stringent outcome measure, we conclude that HNGMT produces iCMs more efficiently than previously published methods.

Publication Title

Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP150747
Identification of cell type specfici markers for type I and type II Hair cells in the mouse utricle using single cell RNAseq
  • organism-icon Mus musculus
  • sample-icon 112 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500, Illumina HiSeq 1000

Description

Single cell RNAseq analysis of hair cells isolated from the mouse utricle at three postnatal time points Overall design: Utricular hair cells were isolated at P12 (49 cells) and P100 (23 cells) and then combined with a previously published single cell data set (samples from GSE71982) containing 35 utricular hair cells isolated at P1 (Burns et al., 2015) The previously published single cell P1 samples have been re-normalized. These samples are included in this series and all processed data are available in the file ute_normalized_data.txt, available at the foot of this record.

Publication Title

Characterization of spatial and temporal development of Type I and Type II hair cells in the mouse utricle using new cell-type-specific markers.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact