refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 425 results
Sort by

Filters

Technology

Platform

accession-icon GSE13917
Complement receptor 2/CD21 human naive B cells contain mostly autoreactive unresponsive clones
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Complement receptor 2negative (CR2/CD21) B cells have been found enriched in patients with autoimmune diseases and in common variable immunodeficiency (CVID) patients who are prone to autoimmunity. However, the physiology of CD21/lo B cells remains poorly characterized. We found that some rheumatoid arthritis (RA) patients also display an increased frequency of CD21/lo B cells in their blood. A majority of CD21/lo B cells from RA and CVID patients expressed germline autoreactive antibodies, which recognized nuclear and cytoplasmic structures. In addition, these B cells were unable to induce calcium flux, become activated, or proliferate in response to B-cell receptor and/or CD40 triggering, suggesting that these autoreactive B cells may be anergic. Moreover, gene array analyses of CD21/lo B cells revealed molecules specifically expressed in these B cells and that are likely to induce their unresponsive stage. Thus, CD21/lo B cells contain mostly autoreactive unresponsive clones, which express a specific set of molecules that may represent new biomarkers to identify anergic B cells in humans.

Publication Title

Complement receptor 2/CD21- human naive B cells contain mostly autoreactive unresponsive clones.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE24736
PTPN22 autoimmune susceptibility gene affects the removal of human developing autoreactive B cells
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene segregates with most autoimmune diseases; its risk allele encodes overactive PTPN22 phosphatases that alter B cell receptor (BCR) signaling potentially involved in the regulation of central B cell tolerance. To assess whether PTPN22 risk allele affects the removal of developing autoreactive B cells, we tested by ELISA the reactivity of recombinant antibodies isolated from single B cells from asymptomatic healthy individuals carrying one or two PTPN22 risk allele(s). We found that new emigrant/transitional and mature naive B cells from PTPN22 risk allele carriers contained high frequencies of autoreactive clones compared to non-carrier control donors. Hence, a single PTPN22 risk allele has a dominant effect on altering autoreactive B cell counterselection, suggesting that early B cell tolerance checkpoint defects precede the onset of autoimmunity. In addition, gene array experiments comparing mature nave B cells from healthy individuals carrying or not PTPN22 risk allele(s) revealed that the strength of association of PTPN22 for autoimmunity, second in importance only to the MHC, may not only be due to BCR signaling alteration but also to the regulation of other genes, which themselves have also been identified as involved in the development of autoimmune diseases.

Publication Title

The PTPN22 allele encoding an R620W variant interferes with the removal of developing autoreactive B cells in humans.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP072759
ZMYND8 co-localizes with NuRD on target genes and regulates recruitment of GATAD2A/NuRD to sites of DNA damage [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The NuRD complex is generally thought to repress transcription at both hyper- and hypomethylated regions in the genome. In addition, the complex is involved in the DNA damage response. Here, we show that ZMYND8 bridges NuRD to a number of putative DNA-binding zinc finger proteins. The ZMYND8 MYND domain directly interacts with PPPL? motifs in the NuRD subunit GATAD2A. Furthermore, GATAD2A and GATAD2B exclusively form homodimers and they thus define mutually exclusive NuRD subcomplexes. ZMYND8 and MBD3 share a large number of genome-wide binding sites, mostly active promoters and enhancers. Depletion of ZMYND8 does not affect NuRD occupancy genome-wide and expression of NuRD/ZMYND8 target genes in steady-state asynchronous cells. However, ZMYND8 facilitates immediate recruitment of GATAD2A/NuRD to induced sites of DNA damage. These results thus show that a specific substoichiometric interaction with a NuRD subunit paralogue provides unique functionality to a distinct NuRD subcomplex. Overall design: RNA-seq samples for HeLa FRT-TO mock, ZMYND8KO, and ZMYND8KO-rescue cells

Publication Title

ZMYND8 Co-localizes with NuRD on Target Genes and Regulates Poly(ADP-Ribose)-Dependent Recruitment of GATAD2A/NuRD to Sites of DNA Damage.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE19530
RSL4
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Aims to look at the targets of the bHLH transcription factor in Arabidopsis roots.

Publication Title

A basic helix-loop-helix transcription factor controls cell growth and size in root hairs.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE53598
Effects of mixed exercise training on gene expression in human skeletal muscle
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Background: Exercise has a positive effect on overall health. This study was performed to get an overview of the effects of mixed exercise training on skeletal muscl

Publication Title

Identification of human exercise-induced myokines using secretome analysis.

Sample Metadata Fields

Sex, Age, Race

View Samples
accession-icon GSE66521
Transcriptomic response of Saccharomyces cerevisiae in mixed-culture wine fermentation with Hanseniaspora guilliermondii
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Natural grape-juice fermentations involve the sequential development of different yeast species which strongly influence the chemical and sensorial traits of the final product. In the present study,we aimed to examine the transcriptomic response of Saccharomyces cerevisiae to the presence of Hanseniaspora guilliermondii wine fermentation.

Publication Title

Genomic expression program of Saccharomyces cerevisiae along a mixed-culture wine fermentation with Hanseniaspora guilliermondii.

Sample Metadata Fields

Treatment, Time

View Samples
accession-icon GSE31140
E.coli response to Antimicrobial Arylamides
  • organism-icon Escherichia coli
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

We treated logarithmically growing cultures of E.coli with a sub-lethal dose of an antimicrobial arylamide compound (PMX 10070) and Polymyxin B sulfate to measure transcriptional responses in an effort to understand mechanism of action

Publication Title

Antibacterial mechanism of action of arylamide foldamers.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41769
Effects of acute exercise on gene expression in exercising and non-exercising human skeletal muscle
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Background: Exercising is know to have an effect on exercising skeletal muscle, but unkown is the effect on non-exercising skeletal muscle. Gene expression changes in the non-exercising skeletal muscle would point to a signalling role of skeletal muscle

Publication Title

Pronounced effects of acute endurance exercise on gene expression in resting and exercising human skeletal muscle.

Sample Metadata Fields

Sex, Age, Specimen part, Race, Subject, Time

View Samples
accession-icon GSE111594
Whole-genome transcriptomic analysis of Notch1-expressing cells in mouse intestinal tumours
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

To define and compare the genome-wide transcriptional signatures of Notch1+ cells in intestinal tumors and in normal ISCs we performed Affymetrix analyses of these two populations.

Publication Title

Lineage tracing of Notch1-expressing cells in intestinal tumours reveals a distinct population of cancer stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE35360
The complex interplay of genetic pathways in C.elegans following the treatment with humic substances
  • organism-icon Caenorhabditis elegans
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Low concentrations of the dissolved leonardite humic acid HuminFeed (HF) prolonged the lifespan and enhanced the thermal stress resistance of the model organism Caenorhabditis elegans. Furthermore growth was impaired and reproduction delayed, effects which have also been identified in other polyphenolic monomers, including tannic acid, rosmarinic acid, and caffeic acid. Moreover, a chemical modification of HF (HF-HQ), which increases its phenolic/quinonoid moieties, magnified the biological impact on C. elegans. To gain a deep insight into the molecular basis of these effects, we performed global transcriptomics on young adult (3 d) and old adult (11 d) nematodes exposed to two concentrations of HF and young adults (3 d) exposed to two concentrations of HF-HQ.

Publication Title

The Nematode Caenorhabditis elegans, Stress and Aging: Identifying the Complex Interplay of Genetic Pathways Following the Treatment with Humic Substances.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact