Prion diseases are fatal neurodegenerative disorders that include bovine spongiform encephalopathy (BSE) and scrapie in animals and Creutzfeldt-Jakob disease (CJD) in humans. They are characterized by long incubation periods, variation in which is determined by many factors including genetic background. In some cases it is possible that incubation time may be directly correlated to the level of gene expression. In order to test this hypothesis we combined incubation time data from five different inbred lines of mice with quantitative gene expression profiling in normal brains and identified five genes with expression levels that correlate with incubation time. One of these genes, Hspa13 (Stch), is a member of the Hsp70 family of ATPase heat shock proteins which have been previously implicated in prion propagation. To test whether Hspa13 plays a causal role in determining the incubation period we tested two over-expressing mouse models. The Tc1 human chromosome 21 (Hsa21) transchromosomic mouse model of Down syndrome is trisomic for many Hsa21 genes including Hspa13 and following Chandler/RML prion inoculation shows a 4% reduction in incubation time. Furthermore, a transgenic model with eight fold over-expression of mouse Hspa13 exhibited highly significant reductions in incubation time of 16%, 15% and 7% following infection with Chandler/RML, ME7 and MRC2 prion strains respectively. These data further implicate Hsp70-like molecular chaperones in protein misfolding disorders such as prion disease.
Overexpression of the Hspa13 (Stch) gene reduces prion disease incubation time in mice.
Specimen part
View SamplesThis data set was generated by the UK Brain Expression Consortium and consists of gene expression data generated from post-mortem human brain samples, dissected from 10 brain regions and originating from a large cohort of neurologically and neuropathologically normal individuals.
Analysis of gene expression data using a linear mixed model/finite mixture model approach: application to regional differences in the human brain.
Sex, Disease, Subject
View SamplesThis data set was generated by the UK Brain Expression Consortium and consists of gene expression data generated from post-mortem human brain samples, dissected from 10 brain regions and originating from a large cohort of neurologically and neuropathologically normal individuals.
Widespread sex differences in gene expression and splicing in the adult human brain.
Sex, Disease, Subject
View SamplesThis data set was generated by the UK Brain Expression Consortium and consists of gene expression data generated from post-mortem human brain samples, dissected from 10 brain regions and originating from a large cohort of neurologically and neuropathologically normal individuals.
Widespread sex differences in gene expression and splicing in the adult human brain.
Sex, Disease, Subject
View SamplesDirected differentiation of midbrain dopaminergic neurons from human embryonic stem cells (hESCs) has galvanized much interest into their potential application in human Parkinsons disease (PD). We conducted genome-wide, exon-specific expression analyses at three temporally and phenotypically distinct stages of lineage restriction (pluripotent hESCs, multipotent neural precursor cells and terminally differentiated midbrain dopaminergic neurons). We compare these to expression data generated on the same platform from samples isolated from human fetal brain and from human control postmortem samples isolated from the substantia nigra. This comparison highlights the commonalities and differences between neural cells derived from hESCs and their counterparts in the human brain.
No associated publication
Specimen part
View SamplesPrions consist of aggregates of abnormal conformers of cellular prion protein (PrPC). They propagate by recruiting host-encoded PrPC although the critical interacting proteins and the reasons for the differences in susceptibility of distinct cell lines and populations are unknown. We derived a lineage of cell lines with markedly differing susceptibilities, unexplained by PrPC expression differences, to identify such factors. We examined the transcriptomes of prion-resistant revertants, isolated from highly susceptible cells, and identified a gene expression signature associated with susceptibility. Several of these genes encode proteins with a role in extracellular matrix (ECM) remodelling, a compartment in which disease-related PrP deposits. Loss-of-function of nine of these genes significantly increased susceptibility. Remarkably, inhibition of fibronectin 1 binding to integrin 8 by RGD peptide inhibited metalloproteinases (MMP)-2/9 whilst increasing prion propagation rates. This indicates that prion replication may be controlled by MMPs at the ECM in an integrin-dependent manner.
Identification of a gene regulatory network associated with prion replication.
Treatment
View SamplesUse traditional whole transcriptome profiling, and single cell whole transcriptome profiling to understand human pre-implantation development, undifferentiated human embryonic stem cells and differentiated human embryonic stem cells.
No associated publication
Sex, Age, Specimen part, Cell line, Treatment
View SamplesComparison of miRNA expression profiles in malignant germ cell tumors compared to non-malignant control group.
Malignant germ cell tumors display common microRNA profiles resulting in global changes in expression of messenger RNA targets.
Sex, Age
View SamplesMicroarray was used to identify differential gene expression pattern in Barrett's esophagus (BE), compared to the normal adjacent epithelia gastric cardia (GC) and normal squamous esophagus (NE)
Evidence for a functional role of epigenetically regulated midcluster HOXB genes in the development of Barrett esophagus.
Specimen part
View SamplesAlthough gain of chromosome-5p is one of the most frequent DNA copy number imbalances in cervical squamous cell carcinoma (SCC), the genes that drive its selection remain poorly understood. In a previous cross-sectional clinical study we showed that the microRNA processor Drosha (located on chromosome-5p) demonstrates frequent copy-number gain and over-expression in cervical SCC, associated with altered microRNA profiles. Here, we have conducted gene depletion/over-expression experiments to demonstrate the functional significance of up-regulated Drosha in cervical SCC cells. Drosha depletion by RNA-interference (RNAi) produced significant, specific reductions in cell motility/invasiveness in vitro, with a silent RNAi-resistant Drosha mutation providing phenotype rescue. Unsupervised hierarchical clustering following global profiling of 319 microRNAs in eighteen cervical SCC cell line specimens generated two groups according to Drosha expression levels. Altering Drosha levels in individual SCC lines changed the group into which the cells clustered, with gene depletion effects being rescued by the RNAi-resistant mutation. Forty-five microRNAs showed significant differential expression between the groups, including four of fourteen that were differentially-expressed in association with Drosha levels in clinical samples. miR-31 up-regulation in Drosha over-expressing samples/cell lines was the highest-ranked change (by adjusted p-value) in both analyses, an observation validated by Northern blotting. These functional data support the role of Drosha as an oncogene in cervical SCC, by affecting expression of cancer-associated microRNAs that have the potential to regulate numerous protein-coding genes.
Functional evidence that Drosha overexpression in cervical squamous cell carcinoma affects cell phenotype and microRNA profiles.
Sex, Cell line
View Samples